Neuroscience
-
Our previous studies have demonstrated that application of inflammatory irritant mustard oil (MO) to the tooth pulp induces medullary glutamate release and central sensitization in the rat medullary dorsal horn (MDH), as well as nociceptive sensorimotor responses in craniofacial muscles in rats. There is recent evidence that anticonvulsant drugs such as pregabalin that influence glutamatergic neurotransmission are effective in several pain states. The aim of this study was to examine whether systemic administration of pregabalin attenuated glutamate release in the medulla as well as these nociceptive effects reflected in increased electromyographic (EMG) activity induced by MO application to the tooth pulp. ⋯ However, application of MO to the pulp significantly increased both the medullary release of glutamate and EMG activity in the jaw and tongue muscles for several minutes. In contrast, pre-medication with pregabalin, but not vehicle control, significantly and dose-dependently attenuated the medullary glutamate release and EMG activity in these muscles after MO application to the tooth pulp (analysis of variance (ANOVA), p<0.05). These results suggest that pregabalin may attenuate the medullary release of glutamate and associated nociceptive sensorimotor responses in this acute inflammatory pulpal pain model, and that it may prove useful for the treatment of orofacial inflammatory pain states.
-
Comparative Study
The differential profiles of withdrawal symptoms induced by morphine and beta-endorphin administered intracerebroventricularly in mice.
In the present study, withdrawal symptoms induced by morphine or β-endorphin administered intracerebroventricularly (i.c.v.) were compared in ICR mice. Naloxone (10mg/kg) was post-treated intraperitoneally (i.p.) 3h after either a single or repeated (1 time/day for 3 days) i.c.v. injections with opioids. Withdrawal symptoms such as jumping frequency, diarrhea, weight loss, rearing, penile licking and paw tremor were observed for 30 min immediately after naloxone treatment. ⋯ In contrast with the findings in morphine-treated group, only pCaMK-IIα expression was decreased by naloxone treatment in repeatedly administered β-endorphin group. Our results suggest that profiles of the withdrawal symptoms induced by morphine and β-endorphin administered supraspinally appear to be differentially regulated. The pCaMK-IIα and the c-FOS protein expression may play important roles for the regulation of naloxone-precipitated withdrawal symptoms such as jumping, diarrhea, weight loss, rearing, penile licking and paw tremor induced by morphine-treated group, whereas the phosphorylation of hypothalamic pCaMK-IIα appears to be involved only in the regulation of naloxone-precipitated withdrawal symptoms such as diarrhea, weight loss and rearing in β-endorphin-treated group.
-
L-arginine, a semi-essential amino acid, can be metabolized to form a number of bioactive molecules. Nitric oxide (NO), generated by NO synthase (NOS) from L-arginine, has been strongly implicated in the aging process. Agmatine, decarboxylated arginine, regulates the production of NO and other metabolites of L-arginine, modulates behavioural function, and has anti-inflammatory and neuroprotective effects. ⋯ Agmatine (40 mg/kg) administered intraperitoneally significantly improved spatial working memory and object recognition memory in aged rats, suppressed age-related elevation in total NOS activity, and restored endothelial NOS protein to the normal level. However, agmatine supplementation was unable to improve exploratory activity and spatial reference learning and memory in aged rats. These findings suggest that exogenous agmatine selectively improves behavioural function in aged rats under the present experimental condition, and merit future investigation of its therapeutic potential in cognitive decline during aging.
-
Neuroglobin (Ngb) is a new member of the globin family and a novel endogenous neuroprotective molecule, but its neuroprotective mechanisms remain largely undefined. Previous studies suggest Ngb is both physically and functionally related to mitochondria, however without direct evidence. Our recent discovery has shown that Ngb can physically interact with a number of mitochondrial proteins. ⋯ Complementary approaches including confocal imaging and immuno-electron microscopy confirmed Ngb distribution in mitochondria under both basal-resting condition and OGD. Inhibitors of mitochondria permeability transition pore (mPTP) and Voltage-Dependent Anion Channel (VDAC) blocked OGD-induced increase of mitochondrial Ngb level, demonstrating a possible role of mPTP in Ngb's mitochondrial translocation. We further found that Ngb overexpression-conferred neuroprotection was correlated with increased mitochondrial Ngb level, suggesting the mitochondria distribution of Ngb is clearly associated with and may contribute to Ngb's neuroprotection.
-
Anhedonia is a core symptom of clinical depression. Two brain neuropeptides that have been implicated in anhedonia symptomology in preclinical depression models are dynorphin and orexin; which are concentrated along lateral hypothalamic dopamine reward pathways. These affect regulating neuropeptides modulate each other's function, implicating an interactive dysfunction between them in anhedonia symptomology. ⋯ But orexin was reduced in the VTA and mPFC. Also, dynorphin and orexin were both diminished in the hypothalamus which is noteworthy since nearly all hypothalamic orexin cells co-express dynorphin. These findings suggest that orexin and dynorphin function may be imbalanced between the hypothalamus and mesocortical dopaminergic brain regions in depression.