Neuroscience
-
One of the benefits musicians derive from their training is an increased ability to detect small differences between sounds. Here, we asked whether musicians' experience discriminating sounds on the basis of small acoustic differences confers advantages in the subcortical differentiation of closely related speech sounds (e.g., /ba/ and /ga/), distinguishable only by their harmonic spectra (i.e., their second formant trajectories). Although the second formant is particularly important for distinguishing stop consonants, auditory brainstem neurons do not phase-lock to its frequency range (above 1000 Hz). ⋯ By measuring the degree to which subcortical response timing differs to the speech syllables /ba/, /da/, and /ga/ in adult musicians and nonmusicians, we reveal that musicians demonstrate enhanced subcortical discrimination of closely related speech sounds. Furthermore, the extent of subcortical consonant discrimination correlates with speech-in-noise perception. Taken together, these findings show a musician enhancement for the neural processing of speech and reveal a biological mechanism contributing to musicians' enhanced speech perception in noise.
-
Biochemical investigations have demonstrated that nitric oxide synthase (NOS) is distributed widely in the olfactory system. However, little is known about the action of NO at the synaptic level on identified neurons in local circuits that process chemosensory signals. Here, using whole-cell recordings, the effect of NO on cholinergic synaptic input to olfactory projection neurons (PNs) is determined in the Drosophila antennal lobes (ALs), which has become an excellent model for studying early olfactory-processing mechanisms. ⋯ The effect of SNP on the frequency of mEPSCs could be eliminated by ODQ as well. Thus, these results suggest that elevated NO concentration decreased cholinergic synaptic input to PNs in a sGC-dependent manner. In this way, NO signaling is suited to fulfill a regulatory role to effectively fine-tune network activity in Drosophila ALs.
-
Receptor interacting protein (RIP)-1 kinase activity mediates a novel pathway that signals for regulated necrosis, a form of cell death prominent in traumatic and ischemic brain injury. Recently, we showed that an allosteric inhibitor of RIP-1 kinase activity, necrostatin-1 (Nec-1), provides neuroprotection in the forebrain following neonatal hypoxia-ischemia (HI). Because Nec-1 also prevents early oxidative injury, we hypothesized that mechanisms involved in this neuroprotection may involve preservation of mitochondrial function and prevention of secondary energy failure. ⋯ Up-regulation of glial fibrillary acidic protein (GFAP) following HI was also prevented by Nec-1 treatment. No differences by gender were observed. We conclude that Nec-1 immediately after HI, is strongly mitoprotective and prevents secondary energy failure by blocking early NO• accumulation, glutathione oxidation and attenuating mitochondrial dysfunction.
-
Elevated sympathetic nerve activity, strongly associated with cardiovascular disease, is partly generated from the presympathetic neurons of the paraventricular nucleus of the hypothalamus (PVN). The PVN-presympathetic neurons regulating cardiac and vasomotor sympathetic activity receive information about cardiovascular status from receptors in the heart and circulation. These receptors signal changes via afferent neurons terminating in the nucleus tractus solitarius (NTS), some of which may result in excitation or inhibition of PVN-presympathetic neurons. ⋯ It was shown that NTS afferent terminals are apposed to either PVN-GABA interneurons or to nitric oxide producing neurons or even directly to presympathetic neurons. Furthermore, there was evidence that some NTS axons were positive for vesicular glutamate transporter 2 (vGLUT2). The data provide an anatomical basis for the different functions of cardiovascular receptors that mediate their actions via the NTS-PVN pathways.
-
A neuron's phase response curve (PRC) shows how inputs arriving at different times during the spike cycle differentially affect the timing of subsequent spikes. Using a full morphological model of a globus pallidus (GP) neuron, we previously demonstrated that dendritic conductances shape the PRC in a spike frequency-dependent manner, suggesting different functional roles of perisomatic and distal dendritic synapses in the control of patterned network activity. In the present study we extend this analysis to examine the impact of physiologically realistic high conductance states on somatic and dendritic PRCs and the time course of spike train perturbations. ⋯ Therefore, we analyzed the interactions of PRC stimuli with transient fluctuations in the synaptic background on a trial-by-trial basis. We found that the variability in responses to PRC stimuli and the incidence of stimulus-evoked added or skipped spikes were stimulus-phase-dependent and reflected the profile of the average PRC, suggesting commonality in the underlying mechanisms. Clear differences in the relation between the phase of input and variability of spike response between dendritic and somatic inputs indicate that these regions generally represent distinct dynamical subsystems of synaptic integration with respect to influencing the stability of spike time attractors generated by the overall synaptic conductance.