Neuroscience
-
The central medial nucleus (CM) of thalamus is a prominent cell group of the rostral intralaminar complex of the thalamus. No previous report in the rat has comprehensively described the projections of CM. Using the anterograde anatomical tracer, Phaseolus vulgaris leucoagglutinin, we examined the efferent projections of CM, comparing projections from rostral (CMr) and caudal (CMc) regions of CM. ⋯ Main CMc subcortical projection sites were the dorsal striatum and the lateral, central, anterior cortical, and basomedial nuclei of amygdala. The largely complementary output of CMr and CMc to diverse areas of cortex and to regions of the striatum and amygdala suggest a combined CM influence over a widespread area of the anterior cortex and throughout the dorsal and ventral striatum and the amygdala. CM projections to limbic and sensorimotor structures of the rostral forebrain suggest that CM may serve to integrate affective, cognitive and sensorimotor functions for goal-directed behavior.
-
Previous studies have shown that housing mice with toys and running wheels increases adult hippocampal neurogenesis and enhances performance on the water maze. However, the relative contribution of running versus enrichment to the neurogenic and pro-cognitive effects is not clear. Recently, it was demonstrated that enrichment devoid of running wheels does not significantly enhance adult hippocampal neurogenesis in female C57BL/6J mice. ⋯ The combination of enrichment and running did not significantly increase hippocampal neurogenesis any more than running alone did. Animals in the running-only condition were the only group to show enhanced acquisition on water maze relative to standard cage controls. We confirm and extend the conclusion that environmental enrichment alone does not significantly increase hippocampal neurogenesis or bestow spatial learning benefits in male C57BL/6J mice, even when the modalities of enrichment are very broad.
-
Menthol is used in pharmaceutical applications because of its desired cooling and analgesic properties. The neural mechanism by which topical application of menthol decreases heat pain is not fully understood. We investigated the effects of topical menthol application on lumbar dorsal horn wide dynamic range and nociceptive-specific neuronal responses to noxious heat and cooling of glabrous hindpaw cutaneous receptive fields. ⋯ Menthol had little effect on responses to innocuous or noxious mechanical stimuli, ruling out a local anesthetic action. Application of 40% menthol to the contralateral hindpaw tended to reduce responses to cooling and noxious heat, suggesting a weak heterosegmental inhibitory effect. These results indicate that menthol has an analgesic effect on heat sensitivity of nociceptive dorsal horn neurons, as well as biphasic effects on cold sensitivity, consistent with previous behavioral observations.
-
It is well known that excitatory amino acids induce unconditioned fear responses when locally injected into the dorsal periaqueductal gray matter (dPAG). However, there are only few studies about the involvement of excitatory amino acids mediation in dPAG in the expression of conditioned fear. The present series of experiments evaluates the participation of AMPA/Kainate and NMDA glutamatergic receptors of dPAG in the expression of conditioned fear, assessed by the fear-potentiated startle (FPS) and conditioned freezing responses. ⋯ Both antagonists reduced the effects of the agonists. The obtained results cannot be attributed to motor deficits. The results suggest an important role of the AMPA/Kainate and NMDA mechanisms of the dPAG in the expression of conditioned freezing and FPS.
-
Gene expression is a necessary step for memory re-stabilization after retrieval, a process known as reconsolidation. Histone acetylation is a fundamental mechanism involved in epigenetic regulation of gene expression and has been implicated in memory consolidation. However, few studies are available in reconsolidation, all of them in vertebrate models. ⋯ Accordingly, we found the first evidence that the administration of a histone acetyl transferase inhibitor during memory reconsolidation impairs long-term memory re-stabilization. Finally, we found that strong training memory, at variance with the standard training memory, was resistant to extinction, indicating that such strong training induced in fact a stronger memory. In conclusion, the results presented here support that the participation of histone acetylation during reconsolidation is an evolutionary conserved feature and constitutes a specific molecular characteristic of strong memories.