Neuroscience
-
Experimental evidence in mice indicates that environmental conditions affect females and males differently. However, in a recent study analyzing the heterozygous mutation of brain-derived neurotrophic factor (BDNF), both sexes presented a similar emotional phenotype, which became obvious only under impoverished, but not in enriched conditions suggesting an "enrichment-induced" rescue. To investigate the basis of this behavioral "rescue" effect, we analyzed neurochemical changes (BDNF expression, serotonergic changes, and corticosterone) in the hippocampus, frontal cortex and hypothalamus of animals housed under respective conditions. ⋯ Male and female corticosterone levels were neither affected by "genotype" nor by "environment". In conclusion, we propose that the rescue of the emotional phenotype by environmental enrichment in BDNF(+/-) mice is directed by distinct mechanisms in males and females. Only in male BDNF(+/-) mice the rescue is related to an increase in hippocampal BDNF expression suggesting that enrichment triggers different neuronal systems in a gender-specific manner.
-
Hepatic encephalopathy (HE) is a potentially fatal complication of acute liver failure, associated with severe neurological dysfunction and coma. The brain's innate immune cells, microglia, have recently been implicated in the pathophysiology of HE. To date, however, only ex vivo studies have been used to characterize microglial involvement. ⋯ Conversely, both microglial activation and motility are unchanged during AHE, despite the mice developing pathologically increased plasma ammonia and severe neurological dysfunction. Our study indicates that microglial activation does not contribute to the early neurological deterioration observed in either HE or AHE. The late microglial activation in HE may therefore be associated with terminal BBB opening and brain edema, thus exacerbating the progression to coma and increasing mortality.
-
Oxidative stress contributes significantly to brain aging. Animals lacking glutamate transporter type 3 (EAAT3) have a decreased level of glutathione, the major intracellular anti-oxidant, in neurons, and present with early onset of brain aging including brain atrophy and cognitive impairment at 11 months of age. Here, 12-month-old male EAAT3 knockout mice received intraperitoneal injection of N-acetylcysteine (NAC) at 150 mg/kg once every day for 4 weeks. ⋯ The knockout mice also had decreased levels of glutathione and increased levels of 4-hydroxy-2-nonenal and proteins containing nitrotyrosine, indicators of oxidative stress, in the cerebral cortex and hippocampus. NAC but not saline injection attenuated these behavioral and biochemical changes in the EAAT3 knockout mice. These results suggest that improvement of anti-oxidative capacity in neurons reverses the existing cognitive impairment in aging brains, implying a potential role of glutathione replacement in cognitive improvement of aging population.
-
The perifornical-lateral hypothalamic area (PF-LHA) is a major wake-promoting structure. It predominantly contains neurons that are active during behavioral and cortical activation. Nitric oxide (NO) is a gaseous neurotransmitter that has been implicated in the regulation of sleep. ⋯ We found that NOC-18-induced suppression in the discharge activity of PF-LHA neurons was significantly attenuated during the blockade of adenosine A(1) receptor-, GABA(A) receptor-, and sGC-cGMP-mediated signaling. These findings suggest that NO-evoked inhibition of PF-LHA neurons involves a complex mechanism including, but may not be limited to, adenosinergic, GABAergic and sGC-cGMP signaling pathways. The findings are consistent with a generalized sleep-promoting role of NO within the PF-LHA and, given the sleep-promoting roles of adenosinergic and GABAergic systems in this area, further suggest that this effect may be mediated through nitrergic interactions with other neurotransmitters and neuromodulators.
-
Degradation of the extracellular matrix by elevated matrix metalloproteinase (MMP) activity following ischemia/reperfusion is implicated in blood-brain barrier disruption and neuronal death. In contrast to their characterized extracellular roles, we previously reported that elevated intranuclear MMP-2 and -9 (gelatinase) activity degrades nuclear DNA repair proteins and promotes accumulation of oxidative DNA damage in neurons in rat brain at 3-h reperfusion after ischemic stroke. Here, we report that treatment with a broad-spectrum MMP inhibitor significantly reduced neuronal apoptosis in rat ischemic hemispheres at 48-h reperfusion after a 90-min middle cerebral artery occlusion (MCAO). ⋯ We found a marked decrease in PARP1, XRCC1, and OGG1, and decreased PARP1 activity. Pretreatment of neurons with selective MMP-2/9 inhibitor II significantly decreased gelatinase activity and downregulation of DNA repair enzymes, decreased accumulation of oxidative DNA damage, and promoted neuronal survival after OGD. Our results confirm the nuclear localization of gelatinases and their nuclear substrates observed in an animal stroke model, further supporting a novel role for intranuclear gelatinase activity in an intrinsic apoptotic pathway in neurons during acute stroke injury.