Neuroscience
-
The role of spinal cannabinoid systems in neuropathic pain of streptozotocin (STZ)-induced diabetic mice was studied. In normal mice, injection of the cannabinoid receptor agonist WIN-55,212-2 (1 and 3μg, i.t.) dose-dependently prolonged the tail-flick latency, whereas there were no changes with the injection of either cannabinoid CB1 (AM 251, 1 μg, i.t.) or CB2 (AM 630, 4 μg, i.t.) receptor antagonists. AM 251 (1 μg, i.t.), but not AM 630 (4 μg, i.t.), significantly inhibited the prolongation of the tail-flick latency induced by WIN-55,212-2 (3 μg, i.t.). ⋯ The protein levels of cannabinoid CB1 receptors, CB2 receptors and diacylglycerol lipase α (DGL-α), the enzyme that synthesizes endocannabinoid 2-arachidonoylglycerol, in the spinal cord were examined using Western blotting. The protein levels of both cannabinoid CB1 and CB2 receptors were increased in STZ-induced diabetic mice, whereas the protein level of DGL-α was significantly decreased. These results indicate that spinal cannabinoid systems are changed in diabetic mice and suggest that cannabinoid CB2 receptor agonists might have an ability to recover diabetic neuropathic pain.
-
Scratching inhibits pruritogen-evoked responses of neurons in the superficial dorsal horn, implicating a spinal site for scratch inhibition of itch. We investigated if scratching differentially affects neurons depending on whether they are activated by itchy vs. painful stimuli, and if the degree of inhibition depends on the relative location of scratching. We recorded from rat lumbar dorsal horn neurons responsive to intradermal (id) microinjection of serotonin (5-hydroxytryptamine, 5-HT). ⋯ These results indicate that scratching exerts a state-dependent inhibitory effect on responses of spinal neurons to pruritic but not algesic stimuli. Moreover, on-site scratching first excited neurons followed by inhibition, while off-site scratching immediately evoked the inhibition of pruritogen-evoked activity. This accounts for the suppression of itch by scratching at a distance from the site of the itchy stimulus.
-
Dysfunctional glutamatergic neurotransmission has been implicated in schizophrenia and mood disorders. As a putative model for these disorders, a mouse line lacking the GluA1 subunit (GluA1-KO) of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor displays a robust novelty-induced hyperlocomotion associated with excessive neuronal activation in the hippocampus. Agonists of metabotropic glutamate 2/3 receptors (mGluR2/3) inhibit glutamate release in various brain regions and they have been shown to inhibit neuronal activation in the hippocampus. ⋯ In female mice, no significant effect for LY354740 (15 mg/kg) on hyperactive behavior or hippocampal c-Fos was observed in either genotype or treatment cohort. A higher dose of LY354740 (30 mg/kg) alleviated hyperlocomotion of GluA1-KO males, but not that of GluA1-KO females. In conclusion, the excessive behavioral hyperactivity of GluA1-KO mice can be partly prevented by reducing neuronal excitability in the hippocampus with the mGluR2/3 agonist suggesting that the hippocampal reactivity is strongly involved in the behavioral phenotype of GluA1-KO mice.
-
Considerable evidence indicates that dopamine (DA) influences tissue plasminogen activator (tPA)-mediated proteolytic processing of the precursor of brain-derived neurotrophic factor (proBDNF) into mature BDNF (mBDNF). However, specific roles in this process for the dopamine D3 receptor (D3R) and the underlying molecular mechanisms are yet to be fully characterized. In the present study, we hypothesized that D3R deletion could influence tPA activity in the prefrontal cortex and hippocampus. ⋯ In addition, when compared to wild-type controls, D3(-/-) mice exhibited increased basal activation of the canonical cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)-driven Akt/cAMP-response element-binding protein (CREB) signaling cascade, as determined by the increased Akt phosphorylation both at Thr304 and Ser473 residues, of DA and cAMP-regulated protein of 32kDa (DARPP-32) at Thr34 and a phosphorylation state-dependent inhibition of glycogen synthetase kinase-3β (GSK-3β) at Ser9, a substrate of Akt whose constitutive function impairs normal CREB transcriptional activity through phosphorylation at its Ser129 residue. Accordingly, CREB phosphorylation at Ser133 was significantly increased in D3(-/-) mice, whereas the GSK-3β-dependent phosphorylation at Ser129 was diminished. Altogether, our finding reveals that mice lacking D3Rs show enhanced tPA proteolytic activity on BDNF which may involve, at least in part, a potentiated Akt/CREB signaling, possibly due to hindered GSK-3β activity.
-
Central nervous system neurons fail to regenerate after birth, which greatly hampers the effective treatment of many neurodegenerative diseases. Neurons differentiated from induced pluripotent stem cells have been considered a possible option for cell-based therapies. Recent discoveries have revealed that fibroblasts can be directly converted into neurons without a transition through a pluripotent state. ⋯ The reprogramming mediated by adenoviruses occurs much sooner than that mediated by lentiviruses. Furthermore, the induced retinal ganglion-like cells that are produced via adenoviral gene delivery are free of exogenous gene integration. Retinal ganglion-like cells that are induced by adenoviruses demonstrate great potential applicability in clinical therapy and provide a novel platform for the research of retinal degenerative diseases.