Neuroscience
-
The neural correlates of perceptual load induced attentional selection were investigated in an functional magnetic resonance imaging (fMRI) experiment in which attentional selection was manipulated through the variation of perceptual load in target search. Participants searched for a vertically or horizontally oriented bar among heterogeneously (the high load condition) or homogeneously (the low load condition) oriented distractor bars in the central display, which was flanked by a vertical or horizontal bar presented at the left or the right periphery. The search reaction times were longer when the central display was of high load than of low load, and were longer when the flanker was incongruent than congruent with the target. ⋯ Anterior cingulate cortex (ACC) was more activated for the incongruent than for the congruent trials. Moreover, ACC and bilateral anterior insula were sensitive to the interaction between perceptual load and flanker congruency such that the activation differences between the incongruent and congruent conditions were significant in the low, but not in the high load condition. These results are consistent with the claim that ACC and bilateral anterior insula may exert executive control by selectively biasing processing in favor of task-relevant information and this biasing depends on the resources currently available to the control system.
-
In the adult CNS, tissue-specific germinal niches, such as the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus of the hippocampus, contain multipotent neural precursor cells (NPCs) with the capacity to self-renew and differentiate into functional brain cells (i.e. neurons, astrocytes or oligodendrocytes). Due to their intrinsic plasticity, NPCs can be considered an essential part of the cellular mechanism(s) by which the CNS tries to repair itself after an injury. In inflammatory CNS disorders, such as multiple sclerosis (MS), neurogenesis and gliogenesis occur as part of an 'intrinsic' self-repair process. ⋯ We found that PPMS derived CSF markedly reduced the proliferation of ENStem-A and increased their differentiation toward neuronal and oligodendroglial cells, compared to control CSF. Similar but less striking results were seen when ENstem-A were treated with SPMS derived CSF. Our findings suggest that in both SPMS and PPMS the CNS milieu, as determined by extrapolation from CSF findings, may stimulate the endogenous pool of NPCs to differentiate into neurons and oligodendrocytes.
-
Motor learning requires protein synthesis within the primary motor cortex (M1). Here, we show that the immediate early gene Arc/Arg3.1 is specifically induced in M1 by learning a motor skill. Arc mRNA was quantified using a fluorescent in situ hybridization assay in adult Long-Evans rats learning a skilled reaching task (SRT), in rats performing reaching-like forelimb movement without learning (ACT) and in rats that were trained in the operant but not the motor elements of the task (controls). ⋯ Arc mRNA expression in SRT was positively correlated with learning success between two sessions (r=0.52; p=0.026). For RMA, S1, ST or cerebellum no significant differences in Arc mRNA expression were found between hemispheres or across behaviors. As Arc expression has been related to different forms of cellular plasticity, these findings suggest a link between M1 Arc expression and motor skill learning in rats.
-
Neuroendocrine secretion often requires prolonged voltage-gated Ca(2+) entry; however, the ability of Ca(2+) from intracellular stores, such as endoplasmic reticulum or mitochondria, to elicit secretion is less clear. We examined this using the bag cell neurons, which trigger ovulation in Aplysia by releasing egg-laying hormone (ELH) peptide. Secretion from cultured bag cell neurons was observed as an increase in plasma membrane capacitance following Ca(2+) influx evoked by a 5-Hz, 1-min train of depolarizing steps under voltage-clamp. ⋯ Employing GTP-γ-S to interfere with endocytosis delayed recovery (presumed membrane retrieval) of the capacitance change following FCCP, but not the train. Finally, secretion was correlated with reproductive behavior, in that neurons isolated from animals engaged in egg-laying presented a greater train-induced capacitance elevation vs quiescent animals. The bag cell neuron capacitance increase is consistent with peptide secretion requiring high Ca(2+), either from influx or stores, and may reflect the all-or-none nature of reproduction.
-
The rostral ventrolateral medulla (RVLM) contains the presympathetic neurons involved in cardiovascular regulation that has been implicated as one of the most important central sites for the antihypertensive action of moxonidine (an α2-adrenergic and imidazoline agonist). Here, we sought to evaluate the cardiovascular effects produced by moxonidine injected into another important brainstem site, the commissural nucleus of the solitary tract (commNTS). Mean arterial pressure (MAP), heart rate (HR), splanchnic sympathetic nerve activity (sSNA) and activity of putative sympathoexcitatory vasomotor neurons of the RVLM were recorded in conscious or urethane-anesthetized, and artificial ventilated male Wistar rats. ⋯ In the sham group, moxonidine (20 nmol/1 μl) injected into 4th V decreased MAP and HR. The hypotension but not the bradycardia produced by moxonidine into the 4th V was reduced in acute (1 day) commNTS-lesioned rats. These data suggest that moxonidine can certainly act in other brainstem regions, such as commNTS to produce its beneficial therapeutic effects, such as hypotension and reduction in sympathetic nerve activity.