Neuroscience
-
While considerable effort has been made to investigate the neural mechanisms of pain, much less effort has been devoted to itch, at least until recently. However, itch is now gaining increasing recognition as a widespread and costly medical and socioeconomic issue. This is accompanied by increasing interest in the underlying neural mechanisms of itch, which has become a vibrant and rapidly-advancing field of research. The goal of the present forefront review is to describe the recent progress that has been made in our understanding of itch mechanisms.
-
The human brain can dynamically adapt to the changing surroundings. To explore this issue, we adopted graph theoretical tools to examine changes in electroencephalography (EEG) functional networks while listening to music. Three different excerpts of Chinese Guqin music were played to 16 non-musician subjects. ⋯ Moreover, differences in network measures were not observed between musical excerpts. These experimental results demonstrate an increase of functional connectivity as well as a more random network structure in the alpha2 band during music perception. The present study offers support for the effects of music on human brain functional networks with a trend toward a more efficient but less economical architecture.
-
This review evaluates and contextualizes the behavioral studies undertaken on cetaceans in terms of the relationship of these behaviors to special levels of intelligence associated with these marine mammals and the evolution of their relatively and absolutely large brain size. Many believe that the large size of the cetacean brain and reported behaviors indicate the need to create a special status for these animals in terms of their intellect, positing that they are second to humans in terms of general intelligence. Cetacean brains became relatively large approximately 32millionyearsago, at the Archaeocete-Neocete faunal transition, and have since remained stable in relative size. ⋯ This contextualization indicates that cetacean intelligence is qualitatively no different to other vertebrates. In addition, the inability of cetaceans to surpass Piaget stage 4/5 on object permanence tests and to solve an "if and only if, then" abstract task indicates the possibility that their levels of general intelligence may be less than that seen in other vertebrates. Sophisticated cognitive abilities appear to play no role in the evolution of large brain size in cetaceans, indicating that alternative theories of large brain size evolution in cetaceans should be considered in more detail.
-
Gamma oscillations have long been considered to emerge late in development. However, recent studies have revealed that gamma oscillations are transiently expressed in the rat barrel cortex during the first postnatal week, a "critical" period of sensory-dependent barrel map formation. The mechanisms underlying the generation and physiological roles of early gamma oscillations (EGOs) in the development of thalamocortical circuits will be discussed in this review. ⋯ EGOs facilitate the precise synchronization of topographically aligned thalamic and cortical neurons. The multiple replay of sensory input during EGOs supports long-term potentiation at thalamocortical synapses. We suggest that this early form of gamma oscillations, which is mechanistically different from adult gamma oscillations, guides barrel map formation during the critical developmental period.
-
Diabetes is associated with an increased risk for brain disorders, namely cognitive impairments associated with hippocampal dysfunction underlying diabetic encephalopathy. However, the impact of a prediabetic state on cognitive function is unknown. Therefore, we now investigated whether spatial learning and memory deficits and the underlying hippocampal dysfunction were already present in a prediabetic animal model. ⋯ HSu rats displayed a poorer performance in hippocampal-dependent short- and long-term spatial memory performance, assessed with the modified Y-maze and Morris water maze tasks, respectively; this was accompanied by a reduction of insulin receptor-β density with normal levels of insulin receptor substrate-1 pSer636/639, and decreased hippocampal glucocorticoid receptor levels without changes of the plasma corticosterone levels. Importantly, HSu animals exhibited increased hippocampal levels of AMPA and NMDA receptor subunits GluA1 and GLUN1, respectively, whereas the levels of protein markers related to nerve terminals (synaptophysin) and oxidative stress/inflammation (HNE, RAGE, TNF-α) remained unaltered. These findings indicate that 9 weeks of sucrose consumption resulted in a metabolic condition suggestive of a prediabetic state, which translated into short- and long-term spatial memory deficits accompanied by alterations in hippocampal glutamatergic neurotransmission and abnormal glucocorticoid signaling.