Neuroscience
-
Phosphoinositide 3-kinase γ (PI3Kγ) is a shared downstream component of chemokine-mediated signaling pathways and regulates migration, proliferation and activation of inflammatory cells. PI3Kγ has been shown to play a crucial role in regulating inflammatory responses during the progression of several diseases. We investigated the potential function of PI3Kγ in mediating inflammatory reactions and the development of experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). ⋯ Consistently, we demonstrated that PI3Kγ deletion in knockout mice mitigates the clinical sign of EAE compared to PI3Kγ+/+ controls. PI3Kγ deletion increased the number of axons in the lumbar spinal cord, including descending 5-HT-positive serotonergic fiber tracts. Our results indicate that PI3Kγ contributes to development of autoimmune CNS inflammation and that PI3Kγ blockade may provide a great potential for treating patients with MS.
-
The olfacto-retinal centrifugal system, a constant component of the central nervous system that appears to exist in all vertebrate groups, is part of the terminal nerve (TN) complex. TN allows the integration of different sensory modalities, and its anatomic variability may have functional and evolutionary significance. We propose that the olfacto-retinal branch of TN is an important anatomical link that allows the functional interaction between olfactory and visual systems in Austrolebias. ⋯ In this last region, the most rostral group is constituted by monopolar pear-shaped neurons and may belong to the septo-preoptic TN complex. The second group, putatively located in the pretectal region, is formed by pseudounipolar neurons and coincides with a conserved vertebrate nucleus of the centrifugal retinal system not involved in the TN complex. The found that connections between the olfactory and visual systems via the olfacto-retinal TN branch suggest an early interaction between these sensory modalities, and contribute to the identification of their currently unknown circuital organization.
-
Intake of a Western diet (WD), which is high in saturated fat and sugar, is associated with deficits in hippocampal-dependent learning and memory processes as well as with markers of hippocampal pathology. In the present study, rats were trained to asymptote on hippocampal-dependent serial feature negative (FN) and hippocampal-independent simple discrimination problems. Performance was then assessed following 7 days on ad libitum chow and after 10, 24, 40, 60, and 90 days of maintenance on WD, on ketogenic (KETO) diet, which is high in saturated fat and low in sugar and other carbohydrates, or continued maintenance on chow (CHOW). ⋯ For rats fed the KETO diet, FN performance and BBB integrity were more closely associated with level of circulating ketone bodies than with obesity phenotype (DR or DIO), with higher levels of ketones appearing to provide a protective effect. The evidence also indicated that FN deficits preceded and predicted increased body weight and adiposity. This research (a) further substantiates previous findings of WD-induced deficits in hippocampal-dependent FN discriminations, (b) suggests that ketones may be protective against diet-induced cognitive impairment, and (c) provides evidence that diet-induced cognitive impairment precedes weight gain and obesity.
-
Indirect evidence suggests the increased production of reactive oxygen species (ROS) in migraine pathophysiology. In the current study we measured lipid peroxidation product in the rat cortex, trigeminal ganglia and meninges after the induction of cortical spreading depression (CSD), a phenomenon known to be associated with migraine aura, and tested nociceptive firing triggered by ROS in trigeminal nerves ex vivo. Application of KCl to dura mater in anesthetized rats induced several waves of CSD recorded by an extracellular electrode in the cortex. ⋯ The action of hydrogen peroxide was mediated by TRPA1 receptors as it was abolished by the specific TRPA1 antagonist TCS-5861528. Using dorsal root ganglion sensory neurons as test system we found that hydrogen peroxide promoted the release of the migraine mediator calcitonin gene-related peptide (CGRP), which we previously identified as a trigger of delayed sensitization of trigeminal neurons. Our data suggest that, after CSD, oxidative stress spreads downstream within the trigeminal nociceptive system and could be involved in the coupling of CSD with the activation of trigeminovascular system in migraine pathology.
-
Presynaptic functions of the mammalian central neurons are regulated by a network of protein interactions. Synaptic vesicle recycling in and neurotransmitter release from the presynaptic nerve terminals are altered when a glutamate-deleting mutation is present in the torsinA protein (ΔE-torsinA). This mutation is linked with a hereditary form of the movement disorder dystonia known as DYT1 dystonia. ⋯ These results were confirmed by fluorogram-based quantitation. Our findings indicate that neither the wild-type nor the ΔE-torsinA mutant protein is present at substantial levels in the presynaptic structures of cultured neurons. Thus, the effects of torsinA, in wild-type and mutant forms, appear to influence presynaptic function indirectly, without residing in presynaptic structures.