Neuroscience
-
To our knowledge, the present data are the first to demonstrate that activation of membrane estrogen receptors (mERs) abolishes opioid receptor-like 1 (ORL1) receptor-mediated analgesia via extracellular signal-regulated kinase (ERK)-dependent non-genomic mechanisms. Estrogen was shown previously to both attenuate ORL1-mediated antinociception and down-regulate the ORL1 gene expression. The present study investigated whether non-genomic mechanisms contribute to estrogen-induced attenuation of ORL1-mediated antinociception by the mERs GPR30, Gq-coupled mER, ERα, and ERβ. ⋯ Activation of GPR30, Gq-mER, ERα, but not ERβ abolished ORL1-mediated antinociception in males and OVX females. E2BSA produced a parallel and significant increase in the phosphorylation of ERK 2 only in OVX females, and pre-treatment with MEK/ERK 1/2 inhibitor, U0126 (10 μg), blocked the mER-mediated abolition of ORL1-mediated antinociception in OVX females. Taken together, the data are consistent with the interpretations that mER activation attenuates ORL1-mediated antinociception through a non-genomic, ERK 2-dependent mechanism in females.
-
Aged ovariectomized (OVX) female monkeys, a model for menopause in humans, show a decline in spine density in the dorsolateral prefrontal cortex (dlPFC) and diminished performance in cognitive tasks requiring this brain region. Previous studies in our laboratory have shown that long-term cyclic treatment with 17β-estradiol (E) produces an increase in spine density and in the proportion of thinner spines in layer III pyramidal neurons in the dlPFC of both young and aged OVX rhesus monkeys. Here we used 3D reconstruction of Lucifer yellow-loaded neurons to investigate whether clinically relevant schedules of hormone therapy would produce similar changes in prefrontal cortical neuronal morphology as long-term cyclic E treatment in young female monkeys. ⋯ When compared with the results of our previously published investigations, our results suggest that cyclic fluctuations in serum E levels may cause corresponding fluctuations in the density of thin spines in the dlPFC. By contrast, continuous administration of E does not support sustained increases in thin spine density. Physiological fluctuations in E concentration may be necessary to maintain the morphological sensitivity of the dlPFC to E.
-
The quality of motion perception depends on visual input during early development. Even 1month of binocular deprivation (BD) from birth impairs motion coherence thresholds when tested in kittens; conversely BD with a 1-month delayed onset does not impair it (Mitchell et al., 2009). We showed that 6months of BD applied from birth induces a selective impairment in a Global Motion Detection task, but not in global form perception, when tested in adulthood (Burnat et al., 2002, 2005). ⋯ Motion coherence thresholds, when tested at the end of a long motion training were not affected by BD and did not differ from those obtained for the normal group. Impaired extraction of low contrast-defined motion signal was found in cats deprived solely in months 3-4 of life. Surprisingly, binocular pattern deprivation during the first 2months of life did not weaken motion sensitivity, revealing the occurrence of a critical period for motion perception later in development than previously suggested.
-
Responses during a simple reaction time task are influenced by temporal expectation, or the ability to anticipate when a stimulus occurs in time. Here, we test the hypothesis that prefrontal D1 dopamine signaling is necessary for temporal expectation during simple reaction time task performance. We depleted dopamine projections to the medial prefrontal circuits by infusing 6-hydroxidopamine, a selective neurotoxin, into the ventral tegmental area (VTA) of rats, and studied their performance on a simple reaction time task with two delays. ⋯ We found that SCH23390, a D1-type dopamine receptor antagonist, specifically attenuated delay-dependent speeding, while sulpiride, a D2-type receptor antagonist, did not. These data suggest that prefrontal D1 dopamine signaling is necessary for temporal expectation during performance of a simple reaction time task. Our findings provide insight into temporal processing of the prefrontal cortex, and how dopamine signaling influences prefrontal circuits that guide goal-directed behavior.
-
The present study was undertaken to investigate the relative contribution of cannabinoid receptors (CBRs) subtypes and to analyze cannabimimetic mechanisms involved in the inhibition of anandamide (AEA) and 2-arachidonoyl glycerol degradation on the antihyperalgesic effect of ankle joint mobilization (AJM). Mice (25-35g) were subjected to plantar incision (PI) and 24h after surgery animals received the following treatments, AJM for 9min, AEA (10mg/kg, intraperitoneal [i.p.]), WIN 55,212-2 (1.5mg/kg, i.p.), URB937 (0.01-1mg/kg, i.p.; a fatty acid amide hydrolase [FAAH] inhibitor) or JZL184 (0.016-16mg/kg, i.p.; a monoacylglycerol lipase [MAGL] inhibitor). Withdrawal frequency to mechanical stimuli was assessed 24h after PI and at different time intervals after treatments. ⋯ Interestingly, in mice pretreated with FAAH or the MAGL inhibitor the antihyperalgesic effect of AJM was significantly longer. This article presents data addressing the CBR mechanisms underlying the antihyperalgesic activity of joint mobilization as well as of the endocannabinoid catabolic enzyme inhibitors in the mouse postoperative pain model. Joint mobilization and these enzymes offer potential targets to treat postoperative pain.