Neuroscience
-
Stroke is a leading cause of death and disability in industrialized countries. Although surviving patients exhibit a certain degree of restoration of function attributable to brain plasticity, the majority of stroke survivors has to struggle with persisting deficits. In order to potentiate post-stroke recovery, several rehabilitation therapies have been undertaken and many experimental studies have reported that brain-derived neurotrophic factor (BDNF) is central to many facets of neuroplastic processes. ⋯ In both hippocampal territories, the pattern of mature BDNF expression shows a more delayed increase (from 8 to 30d), which coincides with the evolution of synaptophysin expression. Interestingly, in these hippocampal territories, pro-BDNF levels evolve differently suggesting a differential gene regulation between the two hemispheres. While highlighting the complexity of changes in BDNF metabolism after stroke, our data suggest that BDNF involvement in spontaneous post-stroke plasticity is region-dependent.
-
Involvement of Nrf2 signaling pathway in the neuroprotective activity of natural kaurane diterpenes.
Oxidative stress is a common harmful condition of several neurodegenerative diseases. Antioxidants represent the medical choice strategy for protection against this unbalanced oxidant-antioxidant status. The present study was undertaken to address the role of kaurane diterpenes foliol, linearol and sidol in the protection against H(2)O(2)-induced oxidative stress in the human astrocytoma U373-MG cell line and to establish the underlying mechanisms. ⋯ Furthermore, these natural products increased Nrf2 nuclear levels, suggesting the activation of this master regulator of antioxidative gene expressions in the protective effect exhibited by the kaurane diterpenes studied. Collectively, these results suggest that the studied kaurane diterpenes, mainly linearol and sidol, protect U373-MG cells from H(2)O(2)-induced injury or degeneration presumably by antioxidant mechanisms. These compounds may be useful agents for counteracting the oxidative damage occurring during the pathological development of several CNS disorders.
-
Comparative Study
Comparison of motor performance, brain biochemistry and histology of two A30P α-synuclein transgenic mouse strains.
Three point mutations in the SNCA gene encoding α-synuclein (aSyn) have been associated with autosomal dominant forms of Parkinson's disease. To better understand the role of the A30P mutant aSyn, we compared two transgenic mouse strains: a knock-in mouse with an introduced A30P point mutation in the wild-type (WT) gene (Snca(tm(A30P))) and a transgenic (Tg) mouse overexpressing the human A30P aSyn gene under the prion promoter [tg(Prnp-SNCA A30P)]. The brain aSyn load, motor performance, brain dopamine (DA) and sensitivity to 6-hydroxydopamine (6-OHDA) were studied in these mice. aSyn was evidently accumulating with age in all mice, particularly in tg(Prnp-SNCA A30P) Tg mice. ⋯ This ratio and homovanillic acid/DA-ratio were declined in Snca(tm(A30P)) mice. Our results demonstrate that the two differently constructed A30P-aSyn mouse strains have distinct behavioral and biochemical characteristics, some of which are opposite. Since the two lines with the same background were not identically produced, the deviations found may be partially caused by factors other than aSyn-related genetic differences.
-
Fibronectin type III domain-containing 5 protein (Fndc5) or peroxisomal protein, is a type I membrane protein that has 209 amino acid residues. Previous studies by our group have shown an increase in its expression after retinoic acid treatment of mouse embryonic stem cells (mESCs) during the process of neural differentiation, leading us to conclude that it might be involved in neurogenesis. In the present study, we have constructed an inducible short hairpin RNA (shRNA) vector that is expressed under induction by doxycycline. ⋯ Fndc5 knockdown during both stages significantly affected both neuronal and astrocytes maturation. We have concluded that Fndc5 expression is required for the appropriate neural differentiation of mESCs. These data confirm the importance of Fndc5 in the generation and development of the nervous system.
-
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) inhibitors administered prior to or immediately after experimental stroke confer acute neuroprotection. However, it remains unclear if delayed treatment with a PTEN inhibitor improves long-term functional recovery after stroke. We addressed the issue in this study. ⋯ Akt and mTOR activation are the well-established cascades downstream to PTEN inhibition and have been shown to contribute to post-injury axonal regrowth in response to PTEN inhibition. Consistently, in an in vitro neuronal ischemia model, BPV enhanced axonal outgrowth of primary cortical neurons after oxygen-glucose deprivation and the enhancing effects were abolished by Akt/mTOR inhibition. In conclusion, delayed BPV treatment improved functional recovery from experimental stroke possibly via enhancing axonal growth and Akt/mTOR activation contributed to BPV-enhanced post-stroke axon growth.