Neuroscience
-
Better treatment of status epilepticus (SE), which typically becomes refractory after about 30 min, will require new pharmacotherapies. The effect of sec-butyl-propylacetamide (SPD), an amide derivative of valproic acid (VPA), on electrographic status epilepticus (ESE) was compared quantitatively to other standard-of-care compounds. Cortical electroencephalograms (EEGs) were recorded from rats during ESE induced with lithium-pilocarpine. ⋯ SPD has a faster onset and greater efficacy than DZP and VPA, and is similar to propofol and pentobarbital. SPD and structurally similar compounds may be useful for the treatment of refractory ESE. Further development and use of automated analyses of ESE may facilitate drug discovery for refractory SE.
-
Comparative Study
Comparison of motor performance, brain biochemistry and histology of two A30P α-synuclein transgenic mouse strains.
Three point mutations in the SNCA gene encoding α-synuclein (aSyn) have been associated with autosomal dominant forms of Parkinson's disease. To better understand the role of the A30P mutant aSyn, we compared two transgenic mouse strains: a knock-in mouse with an introduced A30P point mutation in the wild-type (WT) gene (Snca(tm(A30P))) and a transgenic (Tg) mouse overexpressing the human A30P aSyn gene under the prion promoter [tg(Prnp-SNCA A30P)]. The brain aSyn load, motor performance, brain dopamine (DA) and sensitivity to 6-hydroxydopamine (6-OHDA) were studied in these mice. aSyn was evidently accumulating with age in all mice, particularly in tg(Prnp-SNCA A30P) Tg mice. ⋯ This ratio and homovanillic acid/DA-ratio were declined in Snca(tm(A30P)) mice. Our results demonstrate that the two differently constructed A30P-aSyn mouse strains have distinct behavioral and biochemical characteristics, some of which are opposite. Since the two lines with the same background were not identically produced, the deviations found may be partially caused by factors other than aSyn-related genetic differences.
-
Loss of function mutations in THAP1 has been associated with primary generalized and focal dystonia in children and adults. THAP1 encodes a transcription factor (THAP1) that harbors an atypical zinc finger domain and plays a critical role in G(1)-S cell cycle control. Current thinking suggests that dystonia may be a neurodevelopmental circuit disorder. ⋯ In contrast, it was more diffusely distributed throughout the dendritic arbor of adult Purkinje cells producing a moderate diffuse staining pattern in the molecular layer. At all time points, nuclear IR was weaker than cytoplasmic IR. The prominent cytoplasmic and developmentally regulated expression of THAP1 suggests that THAP1 may function as part of a cell surface-nucleus signaling cascade involved in terminal neural differentiation.
-
The elderly have comparatively worse cognitive impairments from traumatic brain injury (TBI) relative to younger adults, but the molecular mechanisms that underlie this exacerbation of cognitive deficits are unknown. Experimental models of TBI have demonstrated that the cyclic AMP-protein kinase A (cAMP-PKA) signaling pathway is downregulated after brain trauma. Since the cAMP-PKA signaling pathway is a key mediator of long-term memory formation, we investigated whether the TBI-induced decrease in cAMP levels is exacerbated in aged animals. ⋯ Rolipram rescued the LTP deficits after mild TBI for young adult animals and caused a partial recovery for aged animals. However, rolipram did not rescue LTP deficits after moderate TBI in either young adult or aged animals. These results indicate that the exacerbation of cognitive impairments in aged animals with TBI may be due to decreased cAMP levels and deficits in hippocampal LTP.
-
This study was designed to examine the effects of chronic running exercise (Ex) on the hypobaric hypoxia-induced neuronal injury in the hippocampus. Male Wistar rats (9 weeks old) were caged in a hypoxic altitude chamber simulating the condition of 9,000 m high (0.303 atm) for 7h and the brains were examined at 0, 4, and 24h after treatment. Hypoxia challenge increased the levels of caspase 3 (mean ± SEM, % of baseline control, 121.9 ± 11.8, 152.3 ± 15.3, 141.6 ± 7.0 for 0, 4 and 24h, respectively, n=5) and induced apoptosis (cell number, 205.7 ± 8.8, 342.3 ± 33.4, 403.0 ± 12.2 for 0, 4 and 24h vs. 7.7 ± 1.4 baseline control, n=3) in the hippocampal CA1 pyramidal neurons. ⋯ Taken together, our results show that chronic Ex protects hippocampal CA1 neurons against hypobaric hypoxia insult. Ex-enhanced bioenergetic adaptation and anti-oxidative capacity may prevent neurons from hypoxia-induced apoptosis. Furthermore, activation of the BDNF signaling pathway may be involved in the Ex-induced protection.