Neuroscience
-
Inhibition of poly(ADP-ribose) polymerase (PARP) has been proposed to have a neuroprotective effect on hippocampal neurons in animal models of epilepsy. However, the mechanisms of PARP-mediated epileptic neuron apoptosis in vitro are still not thoroughly understood. Therefore, we investigated the effect of PARP inhibition and the underlying mechanisms in the hippocampal neuronal culture model of acquired epilepsy which is generally accepted as the neuronal culture model of spontaneous seizure discharge in vitro. ⋯ Western blot and confocal laser scanning microscopy (CLSM) analysis showed that DPQ increased the phosphorylation of Akt and attenuated mitochondria-nucleus translocation of the apoptosis-inducing factor (AIF). Furthermore, wortmannin, an inhibitor of PI-3K, inhibited the translocation of AIF to the nucleus. The results of the present study demonstrated that the inhibition of PARP might have therapeutic value in seizure-induced hippocampal neuron damage in vitro via suppressing Akt-mediated AIF translocation.
-
Stroke is a leading cause of death and disability in industrialized countries. Although surviving patients exhibit a certain degree of restoration of function attributable to brain plasticity, the majority of stroke survivors has to struggle with persisting deficits. In order to potentiate post-stroke recovery, several rehabilitation therapies have been undertaken and many experimental studies have reported that brain-derived neurotrophic factor (BDNF) is central to many facets of neuroplastic processes. ⋯ In both hippocampal territories, the pattern of mature BDNF expression shows a more delayed increase (from 8 to 30d), which coincides with the evolution of synaptophysin expression. Interestingly, in these hippocampal territories, pro-BDNF levels evolve differently suggesting a differential gene regulation between the two hemispheres. While highlighting the complexity of changes in BDNF metabolism after stroke, our data suggest that BDNF involvement in spontaneous post-stroke plasticity is region-dependent.
-
Rett syndrome (RTT) is a disorder with a pronounced neurological phenotype and is caused mainly by mutations in the X-linked gene MECP2. A common feature of RTT is an abnormal electroencephalography and a propensity for seizures. In the current study we aimed to assess brain network excitability and seizure propensity in a mouse model of RTT. ⋯ Brain slices challenged with the GABA(A)-receptor antagonist bicuculline (0.1-10 μM) and the potassium channel blocker 4-aminopyridine (1-50 μM) also revealed differences between genotypes with hippocampal circuits from Mecp2(stop/y) mouse slices showing enhanced epileptiform burst duration and frequency. In contrast to these network level findings, single cell analysis of pyramidal cells by whole-cell patch clamp recording revealed no detectable differences in synaptic or biophysical properties between methyl-CpG-binding protein 2 (MeCP2)-containing and MeCP2-deficient neurons. These data support the proposal that loss of MeCP2 alters network level excitability in the brain to promote epileptogenesis.
-
Progesterone has been shown to exert pleiotropic actions in the brain of both male and females. In particular, after traumatic brain injury (TBI), progesterone has important neuroprotective effects. In addition to intracellular progesterone receptors, membrane receptors of the hormone such as membrane progesterone receptor (mPR) may also be involved in neuroprotection. ⋯ The wide neuroanatomical distribution of mPRα suggests that this receptor may play a role beyond neuroendocrine and reproductive functions. However, in the absence of injury its role might be restricted to neurons. The induction of mPRα after TBI in microglia, astrocytes and oligodendrocytes, points to a potential role in mediating the modulatory effects of progesterone in inflammation, ion and water homeostasis and myelin repair in the injured brain.