Neuroscience
-
Selected morphological, molecular and functional aspects of various microglial cell populations were characterized in cell cultures established from the forebrains of E18 rat embryos. The mixed primary cortical cultures were maintained for up to 28days using routine culturing techniques when the microglial cells in the culture were not stimulated or immunologically challenged. During culturing, expansion of the microglial cell populations was observed, as evidenced by quantitative assessment of selected monocyte/macrophage/microglial cell-specific markers (human leukocyte antigen (HLA) DP, DQ, DR, CD11b/c and Iba1) via immunocyto- and histochemistry and Western blot analysis. ⋯ The microglial function was assessed by an in vitro phagocytosis assay. Unstimulated microglia with low TI values were significantly more active in phagocytosing fluorescent microspheres than the ramified forms. In vitro studies on microglial population dynamics combined with phenotypic characterization can be of importance when different in vivo pathophysiological situations are modeled in vitro.
-
Recent functional imaging studies that examined functional connectivity in the resting brain have demonstrated various intrinsic connectivity networks (ICNs). Certain patterns of over- and underactivity in various ICNs have been hypothesized to form the neural basis of psychiatric disorders. Furthermore, activity in the ICNs does not reflect ongoing mental activity but the maintenance of neural circuits in a ready state suggesting not only relationships between ICNs and disorders but also correlations between ICNs and personality. ⋯ Based on a previous study that demonstrated the functional relevance of the insular salience ICN for state anxiety, we used the harm avoidance scale from the Temperament and Character Inventory (TCI) as a trait marker to demonstrate increased functional connectivity within the insular salience ICN. Specifically, the functional connectivity between the anterior insula and the anterior cingulate and between the anterior insula and the dorsolateral prefrontal cortex were positively correlated with individual harm avoidance scores. The results fit into previous work, provide evidence for a potential biomarker of anxiety disorders and, most importantly, demonstrate a direct neural correlate of the personality trait harm avoidance in the absence of external stimulation.
-
Characterization of the brain's vascular system is of major clinical importance in the assessment of patients with cerebrovascular disease. The aim of this study was to characterize brain hemodynamics using multiparametric methods and to obtain reference values from the healthy brain. A multimodal magnetic resonance imaging (MRI) study was performed in twenty healthy subjects, including dynamic susceptibility contrast imaging and blood oxygen level dependence (BOLD) during hypercapnia and carbogen challenges. ⋯ Within the BVD cluster, a significant delay of ∼1.9 s of the bolus arrival time was detected within the veins relative to the arteries. This parameter enabled to differentiate between the various blood vessels, including arteries, veins and choroid plexus. This study provides reference values for several hemodynamic parameters, obtained from healthy brains, and may be clinically important in the assessment of patients with various vascular pathologies.
-
Despite the obvious importance of inter-girdle coordination for quadrupedal locomotion in terrestrial mammals, its organization remains poorly understood. Here, we evaluated cycle and phase durations, as well as footfall patterns of four intact adult cats trained to walk on a transverse split-belt treadmill that could independently control fore- and hindlimb speed. When the hindlimbs walked at faster speeds than the forelimbs, an equal rhythm was always maintained between the fore- and hindlimbs, even at the highest fore-hindlimb speed ratio of 1:3 (0.4:1.2 m/s). ⋯ When the rhythm between the fore- and hindlimbs broke down, hindlimb cycle and phase durations were similar to predicted values, whereas forelimb values were shorter than predicted. Moreover, several additional sequences of footfall patterns were observed. Therefore, the results clearly demonstrate the existence of a bidirectional, asymmetric, and flexible control of inter-girdle coordination during quadrupedal locomotion in the intact adult cat.
-
Spinal α-amino-3-hydroxy-5-methy-4-isoxazole propionate (AMPA) receptor plays an important role in acute pain induced by surgical tissue injuries. Our previous study has shown that the enhanced phosphorylation of AMPA receptor GluR1 subunits at Serine-831 sites by protein kinase C (PKC) in the spinal cord dorsal horn is involved in post-surgical pain hypersensitivity. ⋯ Intrathecal (i.t.) pretreatment of small interfering RNA targeting PKCγ to reduce the PKCγ expression in the spinal cord significantly attenuated the pain hypersensitivity and inhibited the phosphorylation of AMPA receptor GluR1 subunits at Serine-831 sites as well as GluR1 membrane trafficking. Our study indicates that the surgical incision-induced phosphorylation of AMPA receptor GluR1 subunits at Serine-831 sites and GluR1 trafficking are regulated by a PKCγ-dependent mechanism.