Neuroscience
-
Review
From the stressed adolescent to the anxious and depressed adult: investigations in rodent models.
Anxiety and depression are the most prevalent of the psychiatric disorders. The average age of onset of these disorders is in adolescence, and stressful experiences are recognized as an important pathway to such dysfunction. ⋯ The focus of the review is investigations in which adolescent rodents were exposed to chronic stressors, describing our research using social instability stress and that of other researchers using various social and non-social stressors. The evidence to date suggests stress in adolescence alters the trajectory of brain development, and particularly that of the hippocampus, increasing anxiety and depressive behaviour in adulthood.
-
In adult rodents, endocannabinoids (eCBs) regulate fast glucocorticoid (GC) feedback in the hypothalamus-pituitary adrenal (HPA) axis, acting as retrograde messengers that bind to cannabinoid receptors (CB1R) and inhibit glutamate release from presynaptic CRH neurons in the paraventricular nucleus of the hypothalamus (PVN). During the first two weeks of life, rat pups exhibit significant CRH and ACTH responses to stress although the adrenal GC output remains reduced. At the same time, pups also display increased sensitivity to GC feedback, but it is unclear whether eCBs play a role in mediating fast GC feedback in neonatal life. ⋯ Methylprednisolone suppressed ACTH stress responses although AM251 still delayed restoration of ACTH levels to the baseline. This suggests that the eCB effect on ACTH secretion in neonates is most evident when there is a dynamic fluctuation of corticosterone levels. Interestingly, AM251 increased basal and stimulated corticosterone secretion in all treatments including MET, suggestive of a direct action of CB1R blockade on adrenal steroidogenesis.
-
In the last decade, early-onset of affective illness has been recognized as a major public health problem. However, clinical studies indicate that although children experience the symptoms of anxiety and depression in much the same way as adults, they display and react to those symptoms differently (Bostic et al., 2005). Recently, we have demonstrated that similar differences in symptoms are found also between adult and juvenile rats (Jacobson-Pick and Richter-Levin, 2010). ⋯ Exposure to forced swim stress resulted in significant alterations of dentate gyrus activity and plasticity in male rats with differences between adult and pre-pubertal animals. Stress had far less impact on females' dentate electrophysiology. The results are in agreement with the differences in behavioral response to stress between pre-pubertal and adult rats, and with reported differences for the sensitivity of male and female rats in performing hippocampus-dependent tasks under stress, such as the active avoidance task.
-
Adolescence is a time of continued brain maturation, particularly in limbic and cortical regions, which undoubtedly plays a role in the physiological and emotional changes coincident with adolescence. An emerging line of research has indicated that stressors experienced during this crucial developmental stage may affect the trajectory of this neural maturation and contribute to the increase in psychological morbidities, such as anxiety and depression, often observed during adolescence. ⋯ More specifically, we examine how stress at prepubertal and early adolescent stages of development affects the morphological plasticity of limbic and cortical brain regions, as well as the enduring effects of adolescent stress exposure on these brain regions in adulthood. We suggest that, due to a number of converging factors during this period of maturation, the adolescent brain may be particularly sensitive to stress-induced neurobehavioral dysfunctions with important consequences on an individual's immediate and long-term health and well-being.
-
Randomized Controlled Trial
Reduced nucleus accumbens reactivity and adolescent depression following early-life stress.
Depression is a common outcome for those having experienced early-life stress (ELS). For those individuals, depression typically increases during adolescence and appears to endure into adulthood, suggesting alterations in the development of brain systems involved in depression. Developmentally, the nucleus accumbens (NAcc), a limbic structure associated with reward learning and motivation, typically undergoes dramatic functional change during adolescence; therefore, age-related changes in NAcc function may underlie increases in depression in adolescence following ELS. ⋯ Additionally, functional magnetic resonance imaging results showed atypical NAcc development, where the ELS group did not show a typical increase in NAcc reactivity during adolescence. Consequently, the ELS group showed NAcc hypoactivation during adolescence, and lower NAcc reactivity was correlated with higher depression scores. The results have important implications for understanding how ELS may influence increases in depression via neural development during the transition to adolescence and highlight the importance of identifying at-risk individuals in childhood, a potential critical period for depression-targeted intervention.