Neuroscience
-
Chronic stress is known to modulate cannabinoid CB1 receptor binding densities in corticolimbic structures, in a region-dependent manner; however, the ontogeny of these changes and the degree to which they recover following exposure to stress have yet to be determined. To this extent, we examined both the immediate and sustained effects (following a 40-day recovery period) of a repeated restraint stress paradigm (30-min restraint/day for 10 days) on CB1 receptor binding in the prefrontal cortex (PFC), hippocampus and amygdala in both adolescent (stress onset at post-natal day [PND] 35) and adult (stress onset at PND 75) male Sprague-Dawley rats. Consistent with previous reports, we found that repeated stress in adult rats resulted in an increase in CB1 receptor binding in the PFC, a reduction in CB1 receptor binding in the hippocampus and no effect in the amygdala. ⋯ Adolescents similarly exhibited this rebound increase in hippocampal CB1 receptor binding, despite a lack in immediate downregulation following repeated restraint. Of particular interest, adolescents exposed to stress were found to have a sustained downregulation of prefrontocortical CB1 receptors in adulthood, which may relate to some of the reported sustained behavioral effects of stress in adolescence. Collectively, these data indicate that the effects of chronic stress on cannabinoid CB1 receptor binding are modulated by the age of stress exposure and period of recovery following the cessation of stress.
-
Adolescence is the transition from childhood to adulthood, with onset marked by puberty and the offset by relative independence from parents. Across species, it is a time of incredible change that carries increased risks and rewards. The ability of the individual to respond adequately to the mental, physical and emotional stresses of life during this time is a function of both their early environment and their present state. ⋯ Second, we examine genetic factors that may enhance susceptibility to stress in one individual over another using translation from genetic mouse models to human neuroimaging. Third, we examine how the timing and nature of stress varies in its impact on brain and behavior. These findings are discussed in the context of implications for adolescent mental health and illness.
-
The notion that stress plays a role in the etiology of psychotic disorders, especially schizophrenia, is longstanding. However, it is only in recent years that the potential neural mechanisms mediating this effect have come into sharper focus. The introduction of more sophisticated models of the interplay between psychosocial factors and brain function has expanded our opportunities for conceptualizing more detailed psychobiological models of stress in psychosis. ⋯ We then discuss biological stress systems and examine changes that precede and follow psychosis onset. Next, research findings on structural and functional brain characteristics associated with psychosis are presented; these findings suggest that normal adolescent neuromaturational processes may go awry, thereby setting the stage for the emergence of psychotic syndromes. Finally, a model of neural mechanisms underlying the pathogenesis of psychosis is presented and directions for future research strategies are explored.
-
Puberty is a period characterized by brain reorganization that contributes to the development of neural and behavioral responses to gonadal steroids. A single injection of the bacterial endotoxin, lipopolysaccharide (LPS), during the pubertal period decreases sexual receptivity in response to ovarian hormones in adulthood. Because chronic estradiol treatment alleviates depression-like symptoms in ovariectomized adult mice, we investigated the effect of pubertal LPS treatment on estradiol's antidepressant effects. ⋯ In contrast, in mice treated pubertally with LPS, estradiol strikingly increased the duration of immobility. No difference in body weight and in locomotion was found among the groups, suggesting that the differences in depression-like behavior were not due to differences in body weight or locomotor activity between LPS-treated and control mice. These results suggest that exposure to an immune challenge during the pubertal period alters the responsiveness of depression-like behavior to estradiol.
-
Early exposure to stressful life events plays a significant role in adolescent depression. Clinical studies have identified a number of factors that increase the risk of depression, including sex of the subject, duration of the stressor, and genetic polymorphisms that elevate serotonin levels. In this study we used the maternal separation (MS) model to investigate to what extent these factors interacted during development to manifest in depressive-like behavior in male and female rats. ⋯ Fluoxetine exposure at P9-16 increased helplessness in controls. Fluoxetine decreased helplessness in MS males independent of age, but increases helplessness in MS females. This study highlights the importance of age of MS (MS between P2-9 increases helplessness in males more than females), the duration of the stressor (previous results show females are effected by longer MS [P2-20], but not shorter [this study]), and that elevated serotonin increases escape latencies to a greater extent in females.