Neuroscience
-
Since brain ischemia is one of the leading causes of adult disability and death, neuroprotection of the ischemic brain is of particular importance. Acute neuroprotective strategies usually have the aim of suppressing glutamate excitotoxicity and an excessive N-methyl-d-aspartate (NMDA) receptor function. Clinically tolerated antagonists should antagonize an excessive NMDA receptor function without compromising the normal synaptic function. ⋯ The manipulation of brain KYNA levels was earlier found to effectively enhance the histopathological outcome of experimental ischemic/hypoxic states. The present investigation of the neuroprotective capacity of L-kynurenine sulfate (L-KYNs) administered systemically after reperfusion in a novel distal middle cerebral artery occlusion (dMCAO) model of focal ischemia/reperfusion revealed that in contrast with earlier results, treatment with L-KYNs worsened the histopathological outcome of dMCAO. This contradictory result indicates that post-ischemic treatment with L-KYNs may be harmful.
-
The endocannabinoid system is implicated in the neurobiology of cocaine addiction. This study evaluated the status of cannabinoid (CB) CB1 and CB2 receptors, the endocytic cycle of CB1 receptors, G protein-coupled receptor regulatory kinases (GRK), and associated signaling (mammalian target of rapamicin (mTOR) and 70kDa ribosomal protein S6 kinase (p70S6K)) in brain cortices of drug abusers and cocaine- and cannabinoid-treated rodents. The main results indicate that in cocaine adddicts, but not in mixed cocaine/opiate or opiate abusers, CB1 receptor protein in the prefrontal cortex (PFC) was reduced (-44%, total homogenate) with a concomitant receptor redistribution and/or internalization (decreases in membranes and increases in cytosol). ⋯ Chronic cocaine in mice was associated with tolerance to the acute activation of mTOR and p70S6K. In long-term cocaine addicts, mTOR and p70S6K activations were not altered when compared with controls, indicating that CB1 receptor signaling was dampened. The dysregulation of CB1 receptor, GRK2/3/5, and mTOR/p70S6K signaling by cocaine may contribute to alterations of neuroplasticity and/or neurotoxicity in brains of cocaine addicts.
-
The olfactory bulb (OB) has been recently identified as a circadian oscillator capable of operating independently of the master circadian pacemaker, the suprachiasmatic nuclei of the hypothalamus. OB oscillations manifest as rhythms in clock genes, electrical activity, and odor sensitivity. Dopamine, norepinephrine, and serotonin have been shown to modulate olfactory information processing by the OB and may be part of the mechanism that underlies diurnal changes in olfactory sensitivity. ⋯ Serotonin and its metabolite hydroxyindoleacetic acid appear to rhythmically fluctuate. Each of these monoamines has been shown to alter OB circuit behavior and influence odor processing. Rhythmic release of serotonin may be a mechanism by which the suprachiasmatic nuclei communicate, indirectly, with the OB.
-
Major depressive disorder (MDD) is a prevalent debilitating psychiatric mood that contributes to increased rates of disability and suicide. However, the pathophysiology underlying MDD remains poorly understood. A growing number of studies have associated dysfunction of the prefrontal cortex (PFC) with depression, but no proteomic study has been conducted to assess PFC protein expression in a preclinical model of depression. ⋯ Two of the four differential proteins selected for Western blotting validation - glyoxalase 1 and dihydropyrimidinase-related protein 2 - were found to be significantly downregulated in CUMS relative to control rats. In conclusion, proteomic analysis reveals that energy and glutathione metabolism are the most significantly altered biological pathways in the CUMS rat model of depression. Further investigation on these processes and proteins in the PFC is key to a better understanding of the underlying pathophysiology of MDD.