Neuroscience
-
The hippocampus, derived from medial regions of the telencephalon, constitutes a remarkable brain structure. It is part of the limbic system, and it plays important roles in information encoding, related to short-term and long-term memory, and spatial navigation. It has also attracted the attention of many clinicians and neuroscientists for its involvement in a wide spectrum of pathological conditions, including epilepsy, intellectual disability, Alzheimer disease and others. ⋯ As well as original landmark findings, modern techniques such as large-scale in situ hybridizations, in utero electroporation and the study of mouse mutants with hippocampal phenotypes, add further detail to our knowledge of the finely regulated processes which form this intricate structure. Molecular signatures are being revealed related to field, intra-field and laminar cell identity, as well as, cell compartments expressing surface proteins instrumental for connectivity. We summarize here old and new findings, and highlight elegant tools used to fine-study hippocampal development.
-
The abilities of docosahexaenoic acid (DHA) and exercise to counteract cognitive decay after traumatic brain injury (TBI) is getting increasing recognition; however, the possibility that these actions can be complementary remains just as an intriguing possibility. Here we have examined the likelihood that the combination of diet and exercise has the added potential to facilitate functional recovery following TBI. Rats received mild fluid percussion injury (mFPI) or sham injury and then were maintained on a diet high in DHA (1.2% DHA) with or without voluntary exercise for 12days. ⋯ These effects of FPI were optimally counteracted by the combination of DHA and exercise. Our results support the possibility that the complementary action of exercise is exerted on restoring membrane homeostasis after TBI, which is necessary for supporting synaptic plasticity and cognition. It is our contention that strategies that take advantage of the combined applications of diet and exercise may have additional effects to the injured brain.
-
Children with autism spectrum disorder (ASD) and age-matched typically-developing (TD) peers were tested on two forms of eyeblink conditioning (EBC), a Pavlovian associative learning paradigm where subjects learn to execute an appropriately-timed eyeblink in response to a previously neutral conditioning stimulus (CS). One version of the task, trace EBC, interposes a stimulus-free interval between the presentation of the CS and the unconditioned stimulus (US), a puff of air to the eye which causes the subjects to blink. In delay EBC, the CS overlaps in time with the delivery of the US, usually with both stimuli terminating simultaneously. ⋯ However, when subsequently tested on delay EBC, subjects with ASD displayed abnormally-timed conditioned eye blinks that began earlier and peaked sooner than those of TD subjects, consistent with previous findings. The results suggest an impaired ability of children with ASD to properly time conditioned eye blinks which appears to be specific to delay EBC. We suggest that this deficit may reflect a dysfunction of the cerebellar cortex in which increases in the intensity or duration of sensory input can temporarily disrupt the accuracy of motor timing over short temporal intervals.
-
The velocity of impact between an object and the human head is a critical factor influencing brain injury outcomes but has not been explored in any detail in animal models. Here we provide a comprehensive overview of the interplay between impact velocity and injury severity in a well-established weight-drop impact acceleration (WDIA) model of diffuse brain injury in rodents. ⋯ There were impact velocity-dependent reductions in sensorimotor performance and in cortical depth-related depression of sensory cortex responses; however axonal injury (demonstrated by immunohistochemistry for β-amyloid precursor protein and neurofilament heavy-chain) was discernible only at the highest impact velocity. We conclude that the WDIA model is capable of producing graded axonal injury in a repeatable manner, and as such will prove useful in the study of the biomechanics, pathophysiology and potential treatment of diffuse axonal injury.
-
Neuronal losses have been shown to occur in the brainstem following a neonatal hypoxic-ischaemic (HI) insult. In particular serotonergic neurons, situated in the dorsal raphé nuclei, appear to be vulnerable to HI injury. Nonetheless the mechanisms contributing to losses of serotonergic neurons in the brainstem remain to be elucidated. ⋯ On the other hand, after tracer deposit in the DR ventral nucleus, we found significant reductions in numbers of retrogradely labelled neurons in the hypothalamus, preoptic area and medial amygdala in P3 HI animals compared to controls. Since losses of descending inputs are associated with decreases in serotonergic neurons in the brainstem raphé nuclei, we propose that disruption of certain descending neural inputs from the forebrain to the DR dorsal and the DR ventral nuclei may contribute to losses of serotonergic neurons after P3 HI. It is important to delineate the phenotypes of different neuronal networks affected by neonatal HI, and the mechanisms underpinning this damage, so that interventions can be devised to target and protect axons from the harmful effects of neonatal HI.