Neuroscience
-
CCAAT/enhancer binding protein-beta (C/EBP-beta) is a transcription factor that belongs to the C/EBP family. To understand the role of C/EBP-beta in the peripheral nervous system, we investigated the expression of C/EBP-beta in the dorsal root ganglion. C/EBP-beta was weakly detected in nuclei of naive dorsal root ganglion (DRG) neurons. ⋯ Treatment with anti-TNF-alpha prevented SNL-induced pain hypersensitivity and C/EBP-beta expression in the DRG. Injection of TNF-alpha into the sciatic nerve produced transient pain hypersensitivity and induction of C/EBP-beta expression in the DRG. These results demonstrate that C/EBP-beta is activated in the DRG neurons by a TNF-alpha-dependent manner and might be involved in the activation of primary afferent neurons after nerve injury.
-
Activation of the orexin (OX)-ergic neurons in the perifornical (PeF) area has been reported to induce waking and reduce rapid eye movement sleep (REMS). The activities of OX-ergic neurons are maximum during active waking and they progressively reduce during non-REMS (NREMS) and REMS. Apparently, the locus coeruleus (LC) neurons also behave in a comparable manner as that of the OX-ergic neurons particularly in relation to waking and REMS. ⋯ Simultaneous application of OX-receptor1 (OX1R) antagonist bilaterally into the LC prevented PeF stimulation-induced REMS suppression. Also, the effect of electrical stimulation of the PeF was long lasting as compared to that of the glutamate stimulation. Further, sustained electrical stimulation significantly decreased both REMS duration as well as REMS frequency, while glutamate stimulation decreased REMS duration only.
-
Hearing loss related to aging is the most common sensory disorder among elderly individuals. Macrophage migration inhibitory factor (MIF) is a multi-functional molecule. The aim of this study was to identify the role of MIF in the inner ear. ⋯ MIF was strongly expressed in the mouse inner ear. Older MIF(-/-) mice showed accelerated age-related hearing loss and morphological inner ear abnormalities. These findings suggest that MIF plays an important role in the inner ear of mice.
-
Interaction between pericytes and endothelial cells via platelet-derived growth factor B (PDGF-B) signaling is critical for the development of the retinal microvasculature. The PDGF-B retention motif controls the spatial distribution range of the growth factor in the vicinity of its producing endothelial cells allowing its recognition by PDGF receptor beta-(PDGFR-β)-carrying pericytes; this promotes recruitment of pericytes to the vascular basement membrane. Impairment of the PDGF-B signaling mechanism causes development of vascular abnormalities, and in the retina this consequently leads to defects in the neurological circuitry. ⋯ Disorganization and dendrite remodeling of rod bipolar cells also added to the diminished neural and synaptic integrity. Moreover, in response to retinal injuries, Müller and microglial cells were observed to be in the reactive phenotype from P15 and onward. Such a sequence of events indicates that the pdgf-b(ret/ret) mouse model displays a short time frame between P10 and P15, during which the retina shifts to a retinopathic phase by the development of prominently altered morphological features.
-
Occurrence of the epileptic seizures during gestation might affect the neurodevelopment of the fetus resulting in cognitive problems for the child later in life. We have previously reported that prenatal pentylenetetrazol (PTZ)-kindling induces learning and memory deficits in the children born to kindled mothers, later in life but the mechanisms involved in this processes are unknown. The cholinergic system plays a major role in learning and memory. ⋯ Our data showed that the retention latencies of pups that received scopolamine (2 or 3μg) were significantly reduced compared to those received normal saline (p<0.05). Interestingly, post training ICV administration of pilocarpine (2μg) retrieved pups' memory deficits (p<0.001). These results demonstrate for the first time, the importance of the central muscarinic cholinergic receptors in learning and memory deficits in pups born to kindled dams and suggest a central mechanism for the cognitive and memory dysfunction, associated with seizures during pregnancy.