Neuroscience
-
Auditory brainstem networks facilitate sound source localization through binaural integration. A key component of this circuitry is the projection from the ventral cochlear nucleus (VCN) to the medial nucleus of the trapezoid body (MNTB), a relay nucleus that provides inhibition to the superior olivary complex. This strictly contralateral projection terminates in the large calyx of Held synapse. ⋯ We then determined the distribution of glial cells following early (P2) unilateral cochlear removal, which results in formation of ectopic projections from the intact VCN to ipsilateral MNTB. We found that following perturbation, astrocytic markers showed expression near the ectopic ipsilateral calyx. Taken together, the developmental expression patterns are consistent with a role for glial cells in the maturation of the calyx of Held and suggest that these cells may have a similar role in maturation of lesion-induced connections.
-
Prion diseases are neurodegenerative and infectious disorders that involve accumulation of misfolded scrapie prion protein, and which are characterized by spongiform degeneration. Autophagy, a major homeostatic process responsible for the degradation of cytoplasmic components, has garnered attention as the potential target for neurodegenerative diseases such as prion disease. We focused on protective effects of sulforaphane found in cruciferous vegetables on prion-mediated neurotoxicity and the mechanism of sulforaphane related to autophagy. ⋯ Furthermore we demonstrated that both sulforaphane-induced autophagy and protective effect of sulforaphane against PrP (106-126)-induced neurotoxicity are dependent on the AMP-activated protein kinase (AMPK) signaling. The present results indicated that sulforaphane of cruciferous vegetables enhanced autophagy flux led to the protection effects against prion-mediated neurotoxicity, which was regulated by AMPK signaling pathways in human neuron cells. Our data also suggest that sulforaphane has a potential value as a therapeutic tool in neurodegenerative disease including prion diseases.
-
Voltage-dependent anion channel (VDAC) is a mitochondrial protein abundantly found in neuronal lipid rafts. In these membrane domains, VDAC is associated with a complex of signaling proteins that trigger neuroprotective responses. Loss of lipid raft integrity may result in disruption of multicomplex association and alteration of signaling responses that may ultimately promote VDAC activation. ⋯ VDAC1 dephosphorylation was corroborated in lipid rafts of AD brains. These results demonstrate that Aβ is involved in alterations of the phosphorylation state of VDAC in neuronal lipid rafts. Modulation of this channel may contribute to the development and progression of AD pathology.
-
Accumulation of hypoxia-inducible transcription factors (HIFs) by prolyl-4-hydroxylase inhibitors (PHI) has been suggested to induce neuroprotection in the ischemic rodent brain. We aimed to investigate in vivo effects of a novel PHI on HIF-regulated neurotrophic and pro-apoptotic factors in the developing normoxic and hypoxic mouse brain. ⋯ PHI treatment modulates neurotrophic factors known to be crucially involved in hypoxia-induced cerebral adaptive mechanisms as well as early brain maturation. Pre-treatment with FG-4497 seems to protect the developing brain from hypoxia-induced apoptosis. Present observations provide basic information for further evaluation of neuroprotective properties of PHI treatment in hypoxic injury of the developing brain. However, potential effects on maturational processes need special attention in experimental research targeting HIF-dependent neuroprotective interventions during the very early stage of brain development.
-
Alterations in hippocampal neurogenesis affect spatial learning, though, the relative contributions of cell proliferation and cell survival on this process are poorly understood. The current study utilized mu opioid receptor (MOR-1) knockout (KO) mice on two background strains, C57BL/6 and 129S6, to assess cell survival as well as determine the impact on spatial learning using the Morris water maze. These experiments were designed to extend prior work showing that both C57BL/6 and 129S6 MOR-1 KO mice have an increased number of proliferating cells in the dentate gyrus (DG) when compared to wild-type (WT) mice. ⋯ These alterations collectively contribute to an increase in the granule cell number in the DG of C57BL/6 MOR-1 KO mice, while the total number of granule cells in 129S6 MOR-1 KO mice is unchanged. Thus, although C57BL/6 and 129S6 MOR-1 KO mice both exhibit increased cell proliferation in the DG, the impact of the MOR-1 mutation on cell survival differs between strains. Furthermore, the decrease in DG cell survival displayed by 129S6 MOR-1 KO mice is correlated with functional deficits in spatial learning, suggesting that MOR-1-dependent alterations in the survival of new neurons in the DG, and not MOR-1-dependent changes in proliferation of progenitor cells in the DG, is important for spatial learning.