Neuroscience
-
Nitric oxide (NO) and oxidative stress caused by reactive oxygen species (ROS) accumulation are two important factors that lead to the progression of human neurological diseases. NO can be detrimental or protective to neurons under oxidative toxicity; however, in the case of brain exposure to oxidative stress, in addition to neurons, the existence of glia may also be disturbed by toxic ROS. The influence NO will have on ROS-mediated glial injury remains unclear. ⋯ H2O2 at toxic levels activated p38 mitogen-activated protein kinases (MAPK) and p53 pathways and increased DNA double strand breaks (DSBs) in microglia, whereas the rescue exerted by sublytic SNAP against toxic H2O2 occurred via the activation of both Akt and extracellular-signal-regulated kinase (ERK) cascades and decreased DNA DSBs. Moreover, a sublytic concentration of SNAP induced both heat shock protein 70 and heme oxygenase-1, which may be involved in decreasing the susceptibility of microglia to H2O2 toxicity. These results suggest that NO exhibits a concentration-dependent dual action of weakening or enhancing oxidative injury in mixed glia, particularly microglia.
-
In certain forms of nerve injury and inflammation, noradrenaline augments pain via actions on up-regulated α1-adrenoceptors (α1-ARs). The aim of this study was to use immunohistochemistry to examine α1-AR expression on peripheral neurons, cutaneous blood vessels and keratinocytes after distal tibia fracture and cast immobilization, a model of complex regional pain syndrome type 1. We hypothesized that there would be increased α1-AR expression on neurons and keratinocytes in the injured limb in comparison to the contralateral unaffected limb after distal tibia fracture, in association with inflammatory changes and pain. α1-AR expression was increased on plantar keratinocytes, dermal blood vessels and peripheral nerve fibers at 16weeks after injury both in the fractured and contralateral uninjured limb. ⋯ However, systemic injection of prazosin inhibited behavioral signs of pain, suggesting that fracture and/or casting triggered an up-regulation of α1-ARs in central nociceptive pathways that augmented pain. Together, these findings indicate that α1-AR expression increases in the hind limbs after distal tibia fracture and cast immobilization. However, these peripheral increases do not contribute directly to residual pain.
-
Scheduled and restricted access to a palatable snack, i.e. chocolate, elicits a brief and strong anticipatory activation and entrains brain areas related with reward and motivation. This behavioral and neuronal activation persists for more than 7days when this protocol is interrupted, suggesting the participation of a time-keeping system. The process that initiates this anticipation may provide a further understanding of the time-keeping system underlying palatable food entrainment. ⋯ A significant anticipatory activation was observed in the prefrontal cortex on day 3 of entrainment and in the nucleus accumbens on day 5, while the arcuate nucleus and pyriform cortex reached significant activation on day 8. The gradual response observed with this protocol indicates that anticipation of a rewarding food requires repetitive and predictable experiences in order to acquire a temporal estimation. We also confirm that anticipation of palatable food involves diverse brain regions.
-
We have studied the performance of a spatial reference memory task, the navigation strategy and the changes in the cytochrome c oxidase activity (COx) in different brain regions in exercised (forced exercise, 10 consecutive days, 15min/day) and non-exercised adult Wistar rats. The spatial learning task was carried out in the radial-arm water maze (RAWM) for four days with six daily trials, and on the fifth day, a probe session was run, in which we rotated the position of the distal cues 90° in a clockwise direction. During the four days of training, the exercised group showed shorter latency and distance traveled to find the platform, as well as fewer memory errors and reduced use of non-appropriate navigation strategies according to the protocol of the task (egocentric). ⋯ Finally, higher COx activity in the cingulate and the retrosplenial cortices, as well as in the dorsal CA1 and CA3 was found in the exercised group. All in all, it seems that the exercise favored the configuration of an efficient and accurate cognitive map of the environment, which was supported by our finding that the rotation of the cues, without altering their overall configuration, did not affect performance. The brain regions with higher COx activity in the exercised group seem to be involved in this function.
-
We employed field potential recordings in extended in vitro brain slices form Sprague-Dawley rats containing the piriform and entorhinal cortices (PC and EC, respectively) to identify the characteristics of epileptiform discharges and concomitant high-frequency oscillations (HFOs, ripples: 80-200Hz, fast ripples: 250-500Hz) during bath application of 4-aminopyridine (4AP, 50μM). Ictal-like discharges occurred in PC and EC either synchronously or independently of each other; synchronous ictal discharges always emerged from a synchronous "fast" interictal background whereas asynchronous ictal discharges were preceded by a "slow" interictal event. ⋯ Finally, antagonizing ionotropic glutamatergic receptors abolished ictal activity in all experiments, increased the duration and rate of occurrence of interictal discharges occurring in PC-EC interconnected slices while it did not influence the slow asynchronous interictal discharges in both areas. Our results identify some novel in vitro interactions between olfactory (PC) and limbic (EC) structures that presumably contribute to in vivo ictogenesis as well.