Neuroscience
-
The auxiliary α2δ-1 subunit of voltage-gated calcium channels is up-regulated in dorsal root ganglion neurons following peripheral somatosensory nerve damage, in several animal models of neuropathic pain. The α2δ-1 protein has a mainly presynaptic localization, where it is associated with the calcium channels involved in neurotransmitter release. Relevant to the present study, α2δ-1 has been shown to be the therapeutic target of the gabapentinoid drugs in their alleviation of neuropathic pain. ⋯ In this study we therefore examined whether the level or distribution of α2δ-1 was altered in the hippocampus following experimental induction of epileptic seizures in rats, using both the kainic acid model of human temporal lobe epilepsy, in which status epilepticus is induced, and the tetanus toxin model in which status epilepticus is not involved. The main finding of this study is that we did not identify somatic overexpression of α2δ-1 in hippocampal neurons in either of the epilepsy models, unlike the upregulation of α2δ-1 that occurs following peripheral nerve damage to both somatosensory and motor neurons. However, we did observe local reorganization of α2δ-1 immunostaining in the hippocampus only in the kainic acid model, where it was associated with areas of neuronal cell loss, as indicated by absence of NeuN immunostaining, dendritic loss, as identified by areas where microtubule-associated protein-2 immunostaining was missing, and reactive gliosis, determined by regions of strong OX42 staining.
-
Non-invasive criteria determining the progress of brain healing are especially important in aging, providing a case-specific therapeutic strategy in populations with dysregulated neurorepair mechanisms. We hypothesized that temporal evolution of magnetic resonance imaging (MRI) of T2 tissue relaxation values correlate with neurological severity scores (NS), and provide a robust indicator of healing in the aging brain after stroke. Pre-treatment of aged rats with brain-only proton irradiation was undertaken to pre-condition the inflammatory system. ⋯ We also found reduced infiltration of T-lymphocytes (CD3) in the brain and normalization of blood lymphocytes. The observed T2-NS correlations may provide a simple MRI-based criterion for recognition of regenerative brain transformation in aged patients following stroke. Selective activation of innate immunity and accelerated transition from pro-inflammatory to pro-healing macrophage phenotypes induced by localized brain irradiation is a potential mechanism for enhancing repair ability in the elderly.
-
Dopamine D2-autoreceptors play a key role in regulating the activity of dopamine neurons and control the synthesis, release and uptake of dopamine. These Gi/o-coupled inhibitory receptors play a major part in shaping dopamine transmission. ⋯ Alterations in the expression and activity of autoreceptors are thought to contribute to Parkinson's disease as well as schizophrenia, drug addiction and attention-deficit hyperactivity disorder (ADHD), which emphasizes the importance of D2-autoreceptors in regulating the dopamine system. This review will summarize the cellular actions of dopamine autoreceptors and discuss recent advances that have furthered our understanding of the mechanisms by which D2-receptors control dopamine transmission.
-
Dopamine (DA) midbrain neurons project to several striatal and cortical target areas and are essentially involved in a puzzling variety of important brain functions such as action selection and motor performance, motivation and reward-based learning, but also working memory and cognition. These neurons act via the release of their (main) neurotransmitter, dopamine, which binds to metabotropic dopamine receptors of the D1 or D2 type on target neurons. Axonal but also dendritic dopamine release is essentially controlled by calcium-triggered exocytosis of dopamine-filled synaptic vesicles primarily driven by electrical activity of the dopamine neuron, which generates patterns of actions potentials in the somato-dendritic domain and distributes them along its axonal tree. ⋯ This review focuses on the properties of these phasic activity changes in midbrain DA neurons. It updates recent progress on the expanding behavioral contexts, associated with phasic electrical activity in DA neurons beyond the classical (canonical) reward prediction error model. The review also highlights recently defined contributions of synaptic inputs for burst and pause generation and the roles of distinct postsynaptic ion channels in midbrain DA neurons.