Neuroscience
-
Clinical studies have shown that agonist-antagonist opioid analgesics that produce their analgesic effect via action on the kappa-opioid receptor, produce a delayed-onset anti-analgesia in men but not women, an effect blocked by co-administration of a low dose of naloxone. We now report the same time-dependent anti-analgesia and its underlying mechanism in an animal model. Using the Randall-Selitto paw-withdrawal assay in male rats, we found that nalbuphine, pentazocine, and butorphanol each produced analgesia during the first hour followed by anti-analgesia starting at ∼90min after administration in males but not females, closely mimicking its clinical effects. ⋯ The selective NOP receptor antagonists, JTC801, and J-113397, but not the sigma receptor antagonist, BD 1047, antagonized nalbuphine anti-analgesia. Furthermore, the NOP receptor agonist NNC 63-0532 produced anti-analgesia with the same delay in onset observed with the three agonist-antagonists, but without producing preceding analgesia and this anti-analgesia was also blocked by naloxone. These results strongly support the suggestion that clinically used agonist-antagonists act at the NOP receptor to produce anti-analgesia.
-
Our previous study demonstrated that chronic prenatal methamphetamine (MA) exposure and a single dose of MA in adulthood decrease focally induced epileptiform activity in adult male rats. As seizures are known to be dependent on sex and female estrous cycle, the goal of the present study was to examine the combined effect of prenatal MA exposure (5mg/kg) and the MA challenge dose (1mg/kg) in adulthood on electroencephalography (EEG) recordings and consequences of brain stimulation in freely moving adult female rats with respect to the estrous cycle. Overall, 12 groups of adult female rats were tested: prenatally MA-exposed, prenatally saline-exposed and rats without prenatal injections, each of these groups was either postnatally challenged with MA or with saline injection (MA-MA, MA-S; S-MA, S-S; C-MA, C-S) and further divided according to the stage of the estrous cycle to metestrus/diestrus (M/D) or proestrus/estrus (P/E). ⋯ The challenge dose of MA also decreased the seizure threshold. Moreover, prenatal as well as adult MA administration decreased the number and occurrence of WDS, respectively. Thus, the present study demonstrates that the effect of prenatal MA exposure and challenge dose of the same drug on focally induced epileptiform activity in adult female rats depends on the estrous cycle.
-
Our previous study has shown that aging and hypertension may alter apparent diffusion coefficient (ADC) and cerebral blood flow (CBF) and increase ischemic susceptibility in the non-ischemic rat brain. The present study wishes to further investigate whether aging and hypertension may influence cerebral diffusion/perfusion and increase ischemic susceptibility in the ischemic brain. Brain magnetic resonance (MR) imaging was examined 1day before and 1 and 7days after bilateral common carotid artery occlusion. ⋯ At day 1 post-operation, CBF reduced and ADC/CBF ratio elevated significantly in the parietal cortex of the rats with infarction when compared to the rats without infarction (CBF: ROC, P=0.002; BLR, P=0.017. ADC/CBF ratio: ROC, P=0.001; BLR, P=0.018). Our results demonstrated that pre-operation ADC and post-operation CBF and ADC/CBF ratio can be used as good MR markers in the prediction of ischemic susceptibility after cerebral hypoperfusion.
-
Pro-inflammatory cytokines induced by inflammation and iron accumulation in the substantia nigra (SN) have been implicated in the pathogenesis of Parkinson's disease (PD). In the present study, we aimed to investigate the relationship between inflammation and iron accumulation in a lipopolysaccharide (LPS)-induced Parkinsonian rat model. The activation of glial cells and elevated levels of pro-inflammatory cytokines were observed in the SN of LPS models, accompanied by iron deposits in the same region. ⋯ The expression of heme oxygenase-1 (HO-1) was also upregulated in vivo and in vitro. These results suggested that pro-inflammatory cytokines might induce Fpn downregulation, which leads to iron accumulation and dopaminergic neurons' degeneration in PD. HO-1 may also contribute to the iron accumulation in neurons, but its mechanism needs to be further investigated.
-
Loss-of-function in the Parkin protein is thought to play a part in causing neuronal cell death in patients with Parkinson's disease. This study explores the effect of Parkin degradation, via the overexpression of nucleus accumbens 1 (NAC1), on cell viability. It was found that NAC1 and Parkin are co-localized within the cell and interact with one another, leading to a decrease in Parkin levels. ⋯ Interestingly, mutation in the POZ/BTB domain (Q23L) of NAC1 disrupts the co-localization and interaction of NAC1 with Parkin and it further abrogates the proteasome inhibition-induced toxicity. We further observed that co-transfection of the mutant form of NAC1 with Parkin reversed the proteasome activity and 20S proteasome protein levels. These results indicate a novel interaction between NAC1 and Parkin that leads to neuronal cell death, a main characteristic in Parkinson's disease.