Neuroscience
-
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder afflicting 2% of the population older than 65 years worldwide. Recently, brain organotypic slices have been used to model neurodegenerative disorders, including PD. They conserve brain three-dimensional architecture, synaptic connectivity and its microenvironment. ⋯ In addition, a significant decline of medium spiny neuron density was observed from days 7 to 16. These sagittal organotypic slices could be used to study the early stage of PD, namely dopaminergic degeneration, and the late stage of the pathology with dopaminergic and GABAergic neuron loss. This novel model might improve the understanding of PD and may represent a promising tool to refine the evaluation of new therapeutic approaches.
-
This study investigates the role of phonology in reading logographic Chinese. Specifically, whether phonological information is obligatorily activated in reading Chinese two-character compounds was examined using the masked-priming paradigm with event-related potential (ERP) recordings. Twenty-two native Cantonese Chinese speakers participated in a lexical decision experiment. ⋯ In addition, attenuation in ERP amplitudes was found in the Semantic-related condition in the window of 250-500 ms (N400). However, no significant results (neither behavioral nor ERP) were found in the Syllable-related condition. These results suggest that phonological activation is not mandatory and the role of phonology is minimal at best in reading Chinese two-character compounds.
-
Intracellular Nogo-A facilitates initiation of neurite formation in mouse midbrain neurons in vitro.
Nogo-A is a transmembrane protein originally discovered in myelin, produced by postnatal CNS oligodendrocytes. Nogo-A induces growth cone collapse and inhibition of axonal growth in the injured adult CNS. In the intact CNS, Nogo-A functions as a negative regulator of growth and plasticity. ⋯ However, this phenotype was not observed when the cultures from WT mice were treated with an antibody neutralizing plasma membrane Nogo-A. In vivo, neither the regeneration of nigrostriatal tyrosine hydroxylase fibers, nor the survival of nigral dopaminergic neurons after partial 6-hydroxydopamine lesions was affected by Nogo-A deletion. These results indicate that during maturation of cultured midbrain (dopaminergic) neurons, intracellular Nogo-A supports neurite growth initiation and branch formation.
-
Autophagy is responsible for the bulk degradation of cytoplasmic contents including organelles through the lysosomal machinery. Neonatal hypoxia-ischemia (HI) causes cell death in the brain by caspase-dependent and independent pathways. Ischemic insults also increase the formation of autophagosomes and activate autophagy. ⋯ In the hippocampus, both HI males and all females had increased numbers of autolysosomes suggesting activation of autophagy but with no effect on lysosome numbers, or Beclin-1 or LC3B protein levels. Males and females had increases in caspase 3/7 activity in their cortices and hippocampi following HI, though the increases were three to sixfold greater in females. The present data: (a) confirm greater caspase activation in the brains of females compared to males following HI; (b) suggest a partial failure to degrade LC3B-II protein in cortical but not hippocampal lysosomes of females as compared to males following neonatal HI; (c) all females have greater basal autophagy activity than males which may protect cells against injury by increasing cell turnover and (d) demonstrate that autophagy pathways are disturbed in regional- and sex-specific patterns in the rat brain following neonatal HI.
-
Kainic acid (KA) administration is known to cause seizures and neuronal death in the hippocampus. High-frequency stimulation (HFS) of the hippocampus can be a promising method in the treatment of epilepsy while the mechanism of action is unknown yet. It remains unknown whether HFS is neuroprotective for hippocampal neurons following KA-induced seizures in macaques, although HFS has neuroprotective effects in animal models of Parkinson's disease. ⋯ In addition, administration of KA led to marked neuronal apoptosis in the hippocampus, accompanied by increased levels of Bax, activated caspase-3 and decreased levels of Bcl-2. HFS was found to attenuate changes in apoptosis-related proteins and robustly decreased neuronal loss following KA administration. These data indicate that hippocampal HFS can protect hippocampal neurons against KA neurotoxicity, and that HFS neuroprotection is likely to operate with inhibition of apoptosis.