Neuroscience
-
During a study of spinal cord injury (SCI), mice in our colony were treated with the anthelmintic fenbendazole to treat pinworms detected in other mice not involved in the study. As this was not part of the original experimental design, we subsequently compared pathological and functional outcomes of SCI in female C57BL/6 mice who received fenbendazole (150 ppm, 8 mg/kg body weight/day) for 4 weeks prior to moderate contusive SCI (50 kdyn force) as compared to mice on the same diet without added fenbendazole. The fenbendazole-treated mice exhibited improved locomotor function, determined using the Basso mouse scale, as well as improved tissue sparing following contusive SCI. ⋯ Autoantibodies produced following SCI contribute to the axon damage and locomotor deficits. Fenbendazole pretreatment reduced the injury-induced CD45R-positive B cell signal intensity and IgG immunoreactivity at the lesion epicenter 6 weeks after contusive SCI in mice, consistent with a possible effect on the immune response to the injury. Fenbendazole and related benzimadole antihelmintics are FDA approved, exhibit minimal toxicity, and represent a novel group of potential therapeutics targeting secondary mechanisms following SCI.
-
Kainic acid (KA) administration is known to cause seizures and neuronal death in the hippocampus. High-frequency stimulation (HFS) of the hippocampus can be a promising method in the treatment of epilepsy while the mechanism of action is unknown yet. It remains unknown whether HFS is neuroprotective for hippocampal neurons following KA-induced seizures in macaques, although HFS has neuroprotective effects in animal models of Parkinson's disease. ⋯ In addition, administration of KA led to marked neuronal apoptosis in the hippocampus, accompanied by increased levels of Bax, activated caspase-3 and decreased levels of Bcl-2. HFS was found to attenuate changes in apoptosis-related proteins and robustly decreased neuronal loss following KA administration. These data indicate that hippocampal HFS can protect hippocampal neurons against KA neurotoxicity, and that HFS neuroprotection is likely to operate with inhibition of apoptosis.
-
In female mammals, the postpartum period involves dramatic shifts in many socioemotional behaviors. This includes a suppression of anxiety-related behaviors that requires recent physical contact with offspring. Factors contributing to differences among females in their susceptibility to the anxiety-modulating effect of offspring contact are unknown, but could include their innate anxiety and brain monoaminergic activity. ⋯ There was no relationship between females' anxiety and dorsal raphe TPH2. Thus, a primary effect of recent contact with offspring on anxiety-related behavior in postpartum rats is to shift females away from their innate anxiety to a more moderate level of responding. This effect is particularly true for females with the lowest anxiety, may be mediated by central noradrenergic systems, and has implications for their ability to attend to their offspring.
-
Perinatal nutrient restriction exerts profound influences on brain development. Animals that suffer undernutrition during lactation also display impaired weight gain. Feeding behavior is mainly modulated by neural and hormonal inputs to the hypothalamus. ⋯ Our results showed a NPY immunostaining peak at P10 in all nuclei in CG animals. In UFG animals this peak was observed by P15, while, in the PFG animals only by P20. Our results suggest that the neuropeptidergic arcuate-paraventricular pathway suffered a delay in NPY distribution in undernourished animals, particularly those fed a 0% protein diet, reflecting an effect on this pathway maturation that could explain previously reported alterations on feeding behavior in these animals.
-
Mitochondrial division inhibitor 1 (mdivi-1), a selective inhibitor of mitochondrial fission protein dynamin-related protein 1 (Drp1), has been reported to display neuroprotective properties in different animal models. In the present study, we investigated the protective effect of mdivi-1 on β-amyloid protein (Aβ)-induced cytotoxicity and its potential mechanisms in BV-2 and primary microglial cells. ⋯ Moreover, we also found that mdivi-1 treatment markedly reversed mitochondrial membrane potential loss, cytochrome c (CytC) release and caspase-3 activation. Altogether, our data suggested that mdivi-1 exerts neuroprotective effects against Aβ-induced microglial apoptosis, and the underlying mechanism may be through inhibiting mitochondrial membrane potential loss, CytC release and suppression of the mitochondrial apoptosis pathway.