Neuroscience
-
Death-associated protein kinase (DAPK) has been found promoting cell death under stress conditions, including cell death during brain ischemia. However, little is known about the mechanisms how DAPK is involved in the neuronal death-promoting process during ischemia. The present study was to examine the DAPK signal transduction pathways using an ischemia mimicking model, oxygen glucose deprivation (OGD). ⋯ The activation of DAPK in turn led to BimEL up-regulation and endoplasmic reticulum (ER) stress activation. Further analyses showed that DAPK mediated BimEL expression through extracellular signal-regulated protein kinase1/2 (ERK1/2) inactivation and c-Jun-N-terminal kinase1/2 (JNK1/2) activation. These findings revealed novel signal transduction pathways leading to neuronal death in response to OGD.
-
It was the aim of the present study to investigate menstrual cycle effects on selective attention and its underlying functional cerebral networks. Twenty-one healthy, right-handed, normally cycling women were investigated by means of functional magnetic resonance imaging using a go/no-go paradigm during the menstrual, follicular and luteal phase. On the behavioral level there was a significant interaction between visual half field and cycle phase with reaction times to right-sided compared to left-sided stimuli being faster in the menstrual compared to the follicular phase. ⋯ Functional imaging, however, did not reveal clear-cut menstrual phase-related changes in activation pattern in parallel to these behavioral findings. A functional connectivity analysis identified differences between the menstrual and the luteal phase: During the menstrual phase, left inferior parietal cortex showed a stronger negative correlation with the right middle frontal gyrus while the left medial frontal cortex showed a stronger negative correlation with the left middle frontal gyrus. These results can serve as further evidence of a modulatory effect of steroid hormones on networks of lateralized cognitive functions not only by interhemispheric inhibition but also by affecting intrahemispheric functional connectivity.
-
Illicit use of prescription opioid analgesics (e.g., oxycodone) in adolescence is a pressing public health issue. Our goal was to determine whether oxycodone self administration differentially affects striatal neurotransmitter receptor gene expression in the dorsal striatum of adolescent compared to adult C57BL/6J mice. Groups of adolescent mice (4 weeks old, n=12) and of adult mice (11 weeks old, n=11) underwent surgery during which a catheter was implanted into their jugular veins. ⋯ Gastrin-releasing peptide receptor mRNA showed a significant Drug × Age interaction, with point-wise significance. More genes in the dorsal striatum of adolescents (19) changed in response to oxycodone self administration compared to controls than in adult (4) mice. Overall, this study demonstrates that repeated oxycodone self administration alters neurotransmitter receptors gene expression in the dorsal striatum of adolescent and adult mice.
-
The rat retrotrapezoid nucleus (RTN) contains neurons that have a well-defined phenotype characterized by the presence of vesicular glutamate transporter 2 (VGLUT2) mRNA and a paired-like homeobox 2b (Phox2b)-immunoreactive (ir) nucleus and the absence of tyrosine hydroxylase (TH). These neurons are important to chemoreception. In the present study, we tested the hypothesis that the chemically-coded RTN neurons (ccRTN) (Phox2b(+)/TH(-)) are activated during an acute episode of running exercise. ⋯ Also the retrograde tracer Fluoro-Gold that was injected into RTN was detected in c-Fos-ir PeF/LH (p<0.05). In summary, the ccRTN neurons (Phox2b(+)TH(-)) are excited by running exercise. Thus, ccRTN neurons may contribute to both the chemical drive to breath and the feed-forward control of breathing associated with exercise.
-
The central integration of thermal (i.e. cold) and mechanical (i.e. pressure) sensory afferents is suggested as to underpin the perception of skin wetness. However, the role of temperature and mechanical inputs, and their interaction, is still unclear. Also, it is unknown whether this intra-sensory interaction changes according to the activity performed or the environmental conditions. ⋯ We conclude that thermal inputs from peripheral cutaneous afferents are critical in characterizing the perception of local skin wetness. However, the role of these inputs might be modulated by an intra-sensory interaction with the tactile afferents. These findings indicate that human sensory integration is remarkably multimodal.