Neuroscience
-
Neuroinflammatory disturbances have been closely associated with depression and many other neuropsychiatric diseases. Although targeting neuroinflammatory mediators with centrally acting drugs has shown certain promise, its translation is faced with several challenges especially drug delivery and safety concerns. Here, we report that neuroinflammation-induced behavioral abnormality could be effectively attenuated with immunomodulatory agents that need not to gain brain penetration. ⋯ Furthermore, these peripheral regulatory effects were accompanied by dampened microglial activation, mitigated expression of pro-inflammatory mediators and neurotoxic species in the central compartment. Taken together, our work suggested that targeting the peripheral immune system may serve as a novel therapeutic approach to neuroinflammation-induced neuropsychiatric disorders. Moreover, our findings provided the rationale for employing peripherally active agents like Rg1 to combat mental disturbances.
-
Neurochemical features in sympathetic and afferent neurons are subject to change during development. Nitric oxide (NO) plays a developmental role in the nervous system. To better understand the neuroplasticity of sympathetic and afferent neurons during postnatal ontogenesis, the distribution of neuronal NO synthase (nNOS) immunoreactivity was studied in the sympathetic para- and prevertebral, nodose ganglion (NG) and Th2 and L4 dorsal root ganglia (DRG) from female Wistar rats of different ages (newborn, 10-day-old, 20-day-old, 30-day-old, 2-month-old, 6-month-old, 1-year-old, and 3-year-old). nNOS-positive neurons were revealed in all sensory ganglia but not in sympathetic ones from birth onward. ⋯ In 10-day-old and older rats, the number of sensory nNOS-IR neurons binding IB4 reached more than 90% in DRG and more than 80% in NG. Only a small number of nNOS-positive cells showed immunoreactivity to calcitonin gene-related peptide, neurofilament 200, calretinin. The information provided here will also serve as a basis for future studies investigating mechanisms of the development of sensory neurons.
-
Calcium/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the transmission of nociceptive input in diabetic neuropathy. The aim of this study was to test whether intraganglionic (i.g.) injection of CaMKII inhibitors may alleviate pain-related behavior in diabetic rats. Diabetes was induced in Sprague-Dawley rats using 55 mg/kg streptozotocin intraperitoneally. ⋯ Attenuation of nociceptive behavior was accompanied with a corresponding decrease of CaMKII alpha expression in DRG neurons on the side of injection. A significant decrease of CaMKII alpha expression was seen in small- and medium-sized neurons. In conclusion, our study provides evidence that CaMKII inhibitors are potential pharmacological agents that should be further explored for treatment of diabetic neuropathy symptoms.
-
Modulation of L-type Ca²⁺-channel function by dopamine is a major determinant of the rate of action potential firing by striatal medium spiny neurons. However, the role of these channels in modulating GABA release by nerve terminals in the basal ganglia is unknown. We found that depolarization-induced [³H]GABA release in both the substantia nigra reticulata and the external globus pallidus (GPe), was depressed by about 50% by either the selective L-channel dihydropyridine blocker nifedipine or the P/Q channel blocker ω-agatoxin TK. ⋯ In the GP nifedipine blocked the effects of D2 and A2(A) receptor coactivation as well as the effects of activating adenylyl cyclase with forskolin. ω-Agatoxin TK did not interfere with the action of these modulatory agents. The L-type Ca²⁺-channel agonist BAYK 8644 stimulated GABA release in both substantia nigra reticulata and GP. Because dihydropyridine sensitivity is a key criterion to identify L-type Ca²⁺-channel activity, our results imply that these channels are determinant of GABA release modulation by dopamine in striatonigral, striatopallidal and pallidonigral terminals.
-
Adaptation is an important process of sensory systems to adjust sensitivity to ensure the appropriate information encoding. Sensitivity and kinetics of retinal ganglion cell (RGC) responses have been studied extensively using a brief flash superimposed on different but steady backgrounds. However, it is still unclear if light adaptation exerts any effect on more complex response properties, such as response nonlinearity. ⋯ We further excluded GABAergic and glycinergic inhibition, N-methyl-D-aspartate receptor rectification and voltage-gated Na(+) channels as potential sources of this nonlinearity by pharmacological experiments. Our results indicate the bipolar cell terminals as the potential site of nonlinearity. Computational modeling constrained by experimental data supports that conclusion and suggests the voltage-sensitive Ca(++) channels and Ca(++)-dependent vesicle release in the bipolar cell terminals as mechanistic basis.