Neuroscience
-
Subjective tinnitus is a chronic neurological disorder in which phantom sounds are perceived. Recent evidence supports the hypothesis that tinnitus is related to neuronal hyperactivity in auditory brain regions, and consequently drugs that increase GABAergic neurotransmission in the CNS, such as the GABA(B) receptor agonist L-baclofen, may be effective as a treatment. ⋯ However, l-baclofen failed to prevent the development of tinnitus when administered during the first 5 days following the acoustic trauma and also failed to reverse it when treatment was carried out every day for 4.5 weeks. We also found that treatment with L-baclofen did not alter the expression of the GABA(B)-R2 subunit in the cochlear nucleus of noise-exposed animals.
-
The rat retrotrapezoid nucleus (RTN) contains neurons that have a well-defined phenotype characterized by the presence of vesicular glutamate transporter 2 (VGLUT2) mRNA and a paired-like homeobox 2b (Phox2b)-immunoreactive (ir) nucleus and the absence of tyrosine hydroxylase (TH). These neurons are important to chemoreception. In the present study, we tested the hypothesis that the chemically-coded RTN neurons (ccRTN) (Phox2b(+)/TH(-)) are activated during an acute episode of running exercise. ⋯ Also the retrograde tracer Fluoro-Gold that was injected into RTN was detected in c-Fos-ir PeF/LH (p<0.05). In summary, the ccRTN neurons (Phox2b(+)TH(-)) are excited by running exercise. Thus, ccRTN neurons may contribute to both the chemical drive to breath and the feed-forward control of breathing associated with exercise.
-
Illicit use of prescription opioid analgesics (e.g., oxycodone) in adolescence is a pressing public health issue. Our goal was to determine whether oxycodone self administration differentially affects striatal neurotransmitter receptor gene expression in the dorsal striatum of adolescent compared to adult C57BL/6J mice. Groups of adolescent mice (4 weeks old, n=12) and of adult mice (11 weeks old, n=11) underwent surgery during which a catheter was implanted into their jugular veins. ⋯ Gastrin-releasing peptide receptor mRNA showed a significant Drug × Age interaction, with point-wise significance. More genes in the dorsal striatum of adolescents (19) changed in response to oxycodone self administration compared to controls than in adult (4) mice. Overall, this study demonstrates that repeated oxycodone self administration alters neurotransmitter receptors gene expression in the dorsal striatum of adolescent and adult mice.
-
This study examined the proposed automatic and involuntary nature of synesthetic experiences in grapheme-color synesthetes by comparing behavioral and blood-oxygen level dependent (BOLD) responses in a synesthetic and a standard version of the Stroop task. Clear interference effects in terms of slower reaction times and stronger BOLD responses in the rostral cingulate zone (RCZ) were found in synesthetes performing the synesthetic version of the Stroop task. ⋯ This was confirmed by stronger BOLD responses in the RCZ for synesthetes specifically in the neutral condition. To the best of our knowledge, this is the first study to show different performance of synesthetes in a standard Stroop task and the presented data can be seen as strong evidence for the automatic and involuntary nature of synesthetic experiences.
-
The modulatory neurotransmitter dopamine induces concentration-dependent changes in synaptic transmission in the entorhinal cortex, in which high concentrations of dopamine suppress evoked excitatory postsynaptic potentials (EPSPs) and lower concentrations induce an acute synaptic facilitation. Whole-cell current-clamp recordings were used to investigate the dopaminergic facilitation of synaptic responses in layer II neurons of the rat lateral entorhinal cortex. A constant bath application of 1 μM dopamine resulted in a consistent facilitation of EPSPs evoked in layer II fan cells by layer I stimulation; the size of the facilitation was more variable in pyramidal neurons, and synaptic responses in a small group of multiform neurons were not modulated by dopamine. ⋯ Dopamine D₁ receptors lead to activation of protein kinase A (PKA), and including the PKA inhibitor H-89 or KT 5720 in the recording pipette solution prevented the facilitation of EPSCs. PKA-dependent phosphorylation of inhibitor 1 or the dopamine- and cAMP-regulated protein phosphatase (DARPP-32) can lead to a facilitation of AMPA receptor responses by inhibiting the activity of protein phosphatase 1 (PP1) that reduces dephosphorylation of AMPA receptors, and we found here that inhibition of PP1 occluded the facilitatory effect of dopamine. The dopamine-induced facilitation of AMPA receptor-mediated synaptic responses in layer II neurons of the lateral entorhinal cortex is therefore likely mediated via a D₁ receptor-dependent increase in PKA activity and a resulting inhibition in PP1-dependent dephosphorylation of AMPA receptors.