Neuroscience
-
The present study characterized fetal sulcation patterns and gyrification in the cerebrum of the New World monkey group, common marmosets, using a 3D T2-weighted high-resolution anatomical magnetic resonance imaging (MRI) sequence from the fixed brain at 7-tesla ex vivo. Fetal sulcation in the marmoset cerebrum began to indent the lateral fissure and hippocampal sulcus in gestational week (GW) 12, and then the following sulci emerged: the callosal and calcarine sulci on GW 15; the superior temporal sulcus on GW 17; and the circular and occipitotemporal sulci on GW 18. The degree of cortical convolution was evaluated quantitatively based on 2D MRI slices by the gyrification index (GI) and based on 3D MRI data by sulcation index (SI). ⋯ Notably, histological analysis showed that the outer subventricular zone (oSVZ) in non-sulcal regions was thicker than that in the presumptive calcarine sulcal region on GW 13, preceding the infolding of the calcarine sulcus. The present results showed definite sulcal infolding on the cerebral cortical surface of the marmosets, with similar pattern and sequence of their emergences to other higher-order primates such as macaques and humans. Differential expansion of the oSVZ may be involved in gyral convolution and sulcal infolding in the developing cerebrum.
-
The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. For a long time it was believed that glucose was the only source of energy for neurons. However, a growing body of experimental evidence indicates that lactic acid, generated by aerobic glycolysis in perivascular astrocytes, is also a source of energy for neuronal activity, particularly when the supply of glucose from the intravascular space is interrupted. ⋯ The work presented here shows that exposure to metabolic stress induces the rapid release of tPA from murine neurons but not from astrocytes. This tPA induces AMPK activation, membrane recruitment of GLUT1, and GLUT1-mediated glucose uptake in astrocytes and endothelial cells. Our data indicate that this is followed by the synthesis and release of lactic acid from astrocytes, and that the uptake of this lactic acid via the monocarboxylate transporter-2 promotes survival in neurons exposed to metabolic stress.
-
Glial cell line-derived neurotrophic factor (GDNF) supports and maintains the neuromuscular system during development and through adulthood by promoting neuroplasticity. The aim of this study was to determine if different modes of exercise can promote changes in GDNF expression and neuromuscular junction (NMJ) morphology in slow- and fast-twitch muscles. Rats were randomly assigned to a run training (run group), swim training (swim group), or sedentary control group. ⋯ GDNF content and total end plate area were positively correlated. End plate area decreased in EDL of the run group and increased in SOL of the swim group. The results indicate that GDNF expression and NMJ morphological changes are activity dependent and that different changes may be observed by varying the exercise intensity in slow- and fast-twitch fibers.
-
Ghrelin, an orexigenic brain-gut hormone promoting feeding and regulating energy metabolism in human and rodents, was reported to enhance both adult neurogenesis and hippocampus-dependent memory formation. However, it is still unclear whether ghrelin-induced hippocampus neurogenesis is responsible for its memory improvement. Using 5-bromo-2' deoxyuridien (BrdU) to birth-date newborn neurons and c-Fos expression to identify dentate gyrus (DG) neurons involved in memory processes, we checked here the effect of ghrelin treatment on adult neurogenesis and cognitive behaviors in mice. ⋯ Consistently, it did not affect the incorporation of newborn neurons into the spatial memory circuits. On the contrary, local infusion of ghrelin (8ng/0.5μl into CA1 region of the hippocampus) impaired spatial memory formation, but did not affect adult neurogenesis. Our results thus suggested that ghrelin plays distinct roles in modulating adult neurogenesis and the memory acquisition in the hippocampus, the two processes may not be correlated and may be mediated by different mechanisms.
-
Neonatal handling, an experimental model of early life experiences, is known to affect hypothalamic-pituitary-adrenal (HPA) axis function, thus increasing adaptability, coping with stress, cognitive abilities and in general brain plasticity-related processes. AMPA receptors (AMPARs) mediate fast synaptic transmission at excitatory glutamatergic synapses in the CNS and are crucial during neuronal development, synaptic plasticity and structural remodeling. AMPARs are composed of four types of subunits, designated as AMPA glutamate receptor subunits (GluA1, GluA2, GluA3 and GluA4), which combine to form tetramers. ⋯ Furthermore, we observed that neonatal handling induced in both sexes decreases of GluA2 mRNA in the dorsal hippocampus, as well as in the somatosensory and occipital cortex, of GluA3 mRNA in most hippocampal areas, amygdaloid complex and cortical regions studied, and of GluA4 mRNA in the ventral hippocampus. These results show that glutamatergic transmission is markedly affected by an early experience. The neonatal handling-induced alterations in AMPAR subunit composition are in line with the increased brain plasticity, the more effective HPA axis function, and in general the more adaptive behavioral phenotype known to characterize the handled animals.