Neuroscience
-
The homeobox-containing transcription factor Otx2 controls the identity, fate and proliferation of mesencephalic dopaminergic (mesDA) neurons. Transgenic mice, in which Otx2 was conditionally overexpressed by a Cre recombinase expressed under the transcriptional control of the Engrailed1 gene (En1(Cre/+); tOtx2(ov/+)), show an increased number of mesDA neurons during development. In adult mice, Otx2 is expressed in a subset of neurons in the ventral tegmental area (VTA) and its overexpression renders mesDA more resistant to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-HCl (MPTP) neurotoxin. ⋯ Accordingly, an increased density of parvalbumin (PV)-positive inhibitory interneurons was detected in the deep layers of the frontal cortex of naïve En1(Cre/+); tOtx2(ov/+) mice, as compared to controls. These data indicate that Otx2 overexpression results in increased DAergic innervation and PV cell density in the fronto-parietal cortex, with important consequences on spontaneous locomotor activity and seizure-induced gene expression. Our results strengthen the notion that Otx2 mutant mouse models are a powerful genetic tool to unravel the molecular and behavioral consequences of altered development of the DAergic system.
-
Recent research has investigated the expression and secretion of neuropeptides by tumors, and the potential of these peptides to facilitate tumor growth and spread. In particular, substance P (SP) and its receptor NK1 have been implicated in tumor cell growth and evasion of apoptosis, although few studies have examined this relationship in vivo. The present study used both in vitro and in vivo models to characterize the role of SP in tumor pathogenesis. ⋯ An animal model of brain tumors using the same cell line was employed to assess the effect of Emend IV on tumor growth in vivo. Administration of Emend IV was found to decrease tumor volume and decrease cellular proliferation indicating that SP may play a role in tumor pathogenesis within the brain. We conclude that SP may provide a novel therapeutic target in the treatment of certain types of brain tumors, with further research required to determine whether the role of SP in cancer is tumor-type dependent.
-
Comparative Study
Motor execution and motor imagery: a comparison of functional connectivity patterns based on graph theory.
Motor execution and imagery (ME and MI), as the basic abilities of human beings, have been considered to be effective strategies in motor skill learning and motor abilities rehabilitation. Neuroimaging studies have revealed several critical regions from functional activation for ME as well as MI. ⋯ Our results showed that using BC, the key node for the ME task mainly focused on the supplementary motor area, while the key node for the MI task mainly located in the right premotor area. These results characterized the connectivity patterns of ME and MI and may provide new insights into the neural mechanism underlying motor execution and imagination of movements.
-
The functional differentiation between regions of psoas major (PM) and quadratus lumborum (QL) may underlie a mechanical basis for recruitment of motor units across the muscle. These mechanically unique fascicle regions of these complex multifascicular muscles, PM and QL, are likely to be controlled independently by the central nervous system (CNS). Fine-wire electrodes recorded the electromyographic activity of the PM fascicles arising from the transverse process (PM-t) and vertebral body (PM-v) and the anterior (QL-a) and posterior (QL-p) layers of QL on the right side during a postural perturbation associated with rapid arm movements. ⋯ The spatial and temporal features of discrete activity of different regions within PM and QL matched their differing mechanical advantage predicted from their anatomy. These findings suggest that the CNS differentially activates individual regions within complex spine muscles to control the three-dimensional forces applied to the spine. The data also point to a sophisticated control of muscle activation that appears based on mechanical advantage.
-
Comparative Study
Influence of the brain sexual differentiation process on despair and antidepressant-like effect of fluoxetine in the rat forced swim test.
Sex differences exist in the depressive disorder prevalence and response to treatment. Several studies suggest that females respond better than males to the action of selective serotonin reuptake inhibitors (SSRIs), suggesting that gonadal hormones modulate mood and the response to these drugs. Sexual steroid hormones exert organizational actions (perennial and on early development) and activational effects (transient and on differentiated tissues). ⋯ Neonatally masculinized females exhibited analogous levels of immobility than control ones; before ovariectomy they responded to FLX similar to controls, but after the surgery they did not respond to fluoxetine. Neonatally orchidectomized males exhibited similar immobility values and response to FLX than control females. The findings suggest that the sex difference in despair depends on the hormones organizational effects and, in males, the response to FLX relies on organizational and activational actions.