Neuroscience
-
The amyloid precursor protein (APP) and amyloid-β (Aβ) peptide play central roles in the pathology and etiology of Alzheimer's disease. Amyloid-induced impairments in neurogenesis have been investigated in several transgenic mouse models but the mechanism of action remains to be conclusively demonstrated. The changes in neurogenesis during this transition of increasing Aβ levels and plaque formation were investigated in the present study. ⋯ In addition, a unique observation was made using isolated neuroprogenitor cells from TgCRND8 mice which were found to be less viable in culture and produced substantial amounts of secreted Aβ peptides. This suggests that the proliferation of neural progenitors in vivo may be modulated by high levels of APP expression and the resulting Aβ generated directly by the progenitor cells. These findings indicate that cell proliferation is increased prior to Aβ deposition and that cell viability is decreased in TgCRND8 mice over time.
-
The interactions between the cannabinoid and opioid systems for pain modulation are reciprocal. However, the role and the importance of the cannabinoid system in the antinociceptive effects of opioids remain uncertain. We studied these interactions with the goal of highlighting the involvement of the cannabinoid system in morphine-induced analgesia. ⋯ Interestingly, the antinociceptive effect of morphine in the acute phase of the formalin test was only reduced in cnr1KO mice. Notably, systemic morphine administration produced similar analgesia in all genotypes, in both the formalin and the hot water immersion tail-flick tests. Because the pattern of expression of the mu opioid receptor (MOP), its binding properties and its G protein coupling remained unchanged across genotypes, it is unlikely that the loss of morphine analgesia in the cnr1KO and cnr2KO mice is the consequence of MOP malfunction or downregulation due to the absence of its heterodimerization with either the CB1 or the CB2 receptors, at least at the level of the spinal cord.
-
Binge eating, a central feature of multiple eating disorders, is characterized by excessive consumption occurring during discrete, often brief, intervals. Highly palatable foods play an important role in these binge episodes - foods chosen during bingeing are typically higher in fat or sugar than those normally consumed. Multiple lines of evidence suggest a central role for signaling by endogenous opioids in promoting palatability-driven eating. ⋯ In rats presented with 4% and then 20% sucrose, daily training in this paradigm produced robust intake of 20% sucrose, preceded by learned hypophagia during access to 4% sucrose. We tested the effects of site-specific infusions of naltrexone (a nonspecific opioid receptor antagonist: 0, 1, 10, and 50μg/side in the nucleus accumbens core and shell), naltrindole (a delta opioid receptor antagonist: 0, 0.5, 5, and 10μg/side in the nucleus accumbens shell) and beta-funaltrexamine (a mu opioid receptor antagonist: 0 and 2.5μg/side in the nucleus accumbens shell) on consumption in this contrast paradigm. Our results show that signaling through the mu opioid receptor in the nucleus accumbens shell is dynamically modulated during formation of learned food preferences, and promotes binge-like consumption of palatable foods based on these learned preferences.
-
Both neuregulin 1 (NRG1) and its receptor ErbB4 are susceptibility genes for schizophrenia. Reduced synchronization of evoked oscillations in several cortical regions, especially in the prefrontal cortex, is associated with the core symptoms of schizophrenia. Recent studies have reported that NRG1 may affect the hippocampal oscillations. ⋯ Moreover, the NRG1-enhanced synchrony of interneurons was through their mutually-inhibitory synapses but not electrical coupling. Furthermore, kainate-induced gamma oscillations in vivo were enhanced by NRG1 and did not change in Dlx5/6-ErbB4(-/-) mice in which the ErbB4 receptors were specifically knocked out in interneurons of the frontal brain. Overall, our findings suggested that NRG1/ErbB4 signaling plays an important role in the synchronized oscillations of the whole network in the prefrontal cortex that are impaired in schizophrenia.
-
Surgery induces learning and memory impairment. Neuroinflammation may contribute to this impairment. Nuclear factor κB (NF-κB) is an important transcription factor to regulate the expression of inflammatory cytokines. ⋯ These surgical effects were attenuated by PDTC. These results suggest that surgery, but not propofol-based anesthesia, induces neuroinflammation and impairment of learning and memory. PDTC attenuates these effects possibly by inhibiting NF-κB activation and the downstream MMP-9 activity.