Neuroscience
-
Under normal and dietary iron deficiency conditions, the BXD recombinant inbred (RI) strains of mice show large variations in regional brain iron concentration, particularly in the ventral midbrain (VMB). In a study utilizing just one of the BXD strains, diurnal changes in subregional brain iron concentration were found, which were dependent on the brain region and sex of the mice. The focus of this study was to determine if diurnal changes in VMB can be found across other BXD RI strains and whether a diurnal effect would be common to all strains or variable across strains similar to the large strain variability in iron concentrations determined during the first part of the light phase. ⋯ In conclusion, significant brain-regional-specific diurnal changes in total iron concentrations were found in a selection of BXD RI mice. Sex and strain are functional determinates of which regions will be affected and in what direction the affect will be. The study provides an animal model for future work into determining the biological and genetic basis of circadian influences on VMB iron homeostasis.
-
Activation of the dopaminergic mesolimbic reward circuit that originates in the ventral tegmental area (VTA) is postulated to preferentially suppress emotional responses to noxious stimuli, and presumably contributes to the addictive liability of strong analgesics. VTA dopamine neurons are activated via cholinergic afferents and microinjection of carbachol (cholinergic agonist) into VTA is rewarding. Here, we evaluated regional differences within VTA in the capacity of carbachol to suppress rats' affective response to pain (vocalization afterdischarges, VADs) and to support conditioned place preference (CPP) learning. ⋯ The results indicate that analgesia and reward are mediated by separate cholinergic mechanisms within pVTA. Nicotinic receptor antagonism within pVTA failed to attenuate carbachol-induced analgesia, but prevented carbachol-induced reward. As addictive liability of analgesics stem from their rewarding properties, the present findings suggest that these processes can be neuropharmacologically separated within pVTA.
-
Placebo treatment can alter brain activation in regions implicated in affective processing and cognitive control of emotions. This functional magnetic resonance imaging (fMRI) study investigated whether a placebo can additionally modulate visual cortex activity and connectivity during affective picture perception. ⋯ This was accompanied by a reduced activation of the primary visual cortex, which showed reduced interaction with the amygdala and the insula. Accordingly, placebos are able to affect basic perceptive processes.
-
Purkinje cell (PC) firing represents the sole output from the cerebellar cortex onto the deep cerebellar and vestibular nuclei. Here, we explored the different modes of PC firing in alert mice by extracellular recording. We confirm the existence of a tonic and/or bursting and quiescent modes corresponding to UP and DOWN state, respectively. ⋯ Complex spike (CS) frequency was increased during the 600-Hz buzz, indicating that this PC output actively contributes to the cerebello-olivary loop by triggering a disinhibition of the inferior olive. During the 600-Hz buzz, the first depolarizing component of the CS was reduced and the second depolarizing component was suppressed. Consistent with our experimental observations, using a 559-compartment single-PC model - in which PC UP state (of about -43mV) was obtained by the combined action of large tonic AMPA conductances and counterbalancing GABAergic inhibition - removal of this inhibition produced the 600-Hz buzz; the simulated buzz frequency decreased following an artificial CS.
-
Neonatal stroke occurs in approximately 1/4000 live births and results in life-long neurological impairments: e.g., cerebral palsy. Currently, there is no evidence-based specific treatment for neonates with stroke. Several studies have reported the benefits of umbilical cord blood (UCB) cell treatment in rodent models of neonatal brain injury. ⋯ With cell treatment, the percent loss of ipsilateral hemispheric volume was significantly ameliorated (21.5±1.9%) compared with the PBS group (25.6±5.1%) when assessed at 7weeks after MCAO. The cell-treated group did not exhibit significant differences from the PBS group in either rotarod (238±46s in the sham-surgery group, 175±49s in the PBS group, 203±54s in the cell-treated group) or open-field tests. The intravenous administration of human UCB CD34(+) cells modestly reduced histological ischemic brain damage after neonatal stroke in mice, with a transient augmentation of CBF in the peri-infarct area.