Neuroscience
-
Long non-coding RNAs (lncRNAs) have been increasingly appreciated as an integral component of gene regulatory networks. Genome-wide features of their origin and expression patterns ascribed a prominent role for lncRNAs to the regulation of protein-coding genes, and also suggest a potential link to many human diseases. ⋯ The brain is one of the richest sources of lncRNAs, many of which have already shown a close relationship with genes or genetic loci implicated in a wide range of neurological disorders. This review describes recently emerging mechanistic principles of lncRNA functions to provide neuroscientists with molecular insights that will help future research on lncRNAs in the brain.
-
Puberty is a critical period of development during which the reemergence of gonadotropin-releasing hormone secretion from the hypothalamus triggers a cascade of hormone-dependent processes. Maturation of specific brain regions including the prefrontal cortex occurs during this window, but the complex mechanisms underlying these dynamic changes are not well understood. Particularly, the potential involvement of epigenetics in this programming has been under-examined. ⋯ Further, as epigenetic machinery is highly environmentally responsive, its involvement may also lend this period of growth to greater vulnerability to external insults, resulting in reprogramming and increased disease risk. Importantly, neuropsychiatric diseases commonly present in individuals during or immediately following puberty, and environmental perturbations including stress may precipitate disease onset by disrupting the normal trajectory of pubertal brain development via epigenetic mechanisms. In this review, we discuss epigenetic processes involved in pubertal brain maturation, the potential points of derailment, and the importance of future studies for understanding this dynamic developmental window and gaining a better understanding of neuropsychiatric disease risk.
-
The foundations of brain architecture are established early in life through a continuous series of dynamic interactions in which environmental conditions and personal experiences have a significant impact on how genetic predispositions are expressed. New scientific research shows that early social experiences can actually influence how genes are expressed. ⋯ Signatures associated with the epigenome can be temporary or permanent, affect multiple organ systems, and increase the risk not only for poor physical and mental health outcomes but also for impairments in future learning capacity and behavior. Here, we focus on recent evidence for a role of epigenetic DNA modifications as a potential mechanism that explains how early social life experiences become embedded in the circuitry of the developing brain and are associated with lifelong consequences.
-
From fertilization throughout development and until death, cellular programs in individual cells are dynamically regulated to fulfill multiple functions ranging from cell lineage specification to adaptation to internal and external stimuli. Such regulation is of major importance in brain cells, because the brain continues to develop long after birth and incorporates information from the environment across life. When compromised, these regulatory mechanisms can have detrimental consequences on neurodevelopment and lead to severe brain pathologies and neurodegenerative diseases in the adult individual. ⋯ Because they are strongly influenced by environmental factors, they have been postulated to depend on epigenetic mechanisms. This review describes recent studies that have identified epigenetic dysfunctions in the pathophysiology of several neurodevelopmental and neurodegenerative diseases. It discusses currently known pathways and molecular targets implicated in pathologies including imprinting disorders, Rett syndrome, and Alzheimer's, Parkinson's and Hungtinton's disease, and their relevance to these diseases.
-
Abnormal gene regulation as a consequence of flawed epigenetic mechanisms may be central to the initiation and persistence of many human diseases. However, the association of epigenetic dysfunction with disease and the development of therapeutic agents for treatment are slow. Developing new methodologies used to visualize chromatin-modifying enzymes and their function in the human brain would be valuable for the diagnosis of brain disorders and drug discovery. ⋯ We summarize advances in the effort to image HDACs and HDAC inhibitory effects in the brain using positron emission tomography (PET) and highlight generalizable techniques that can be adapted to investigate other specific components of epigenetic machinery. Translational tools like neuroimaging by PET and magnetic resonance imaging provide the best way to link our current understanding of epigenetic changes with in vivo function in normal and diseased brains. These tools will be a critical addition to ex vivo methods to evaluate - and intervene - in CNS dysfunction.