Neuroscience
-
Prenatal glucocorticoids (GCs) are routinely used for pregnant women in preterm labor to prevent respiratory distress syndrome and intraventricular hemorrhage in premature infants. However, the effect of antenatal GCs on neurogenesis in preterm neonates remains elusive. Herein, we hypothesized that prenatal GCs might suppress both glutamatergic and GABAergic neurogenesis in preterm rabbits and that this treatment would induce distinct changes in the expression of transcription factors regulating these developmental events. ⋯ Moreover, the mRNA expression of transcription factors, including Pax6, Ngn1/2, Emx1/2, Insm1, Dlx1, Nkx2.1, and Gsh2, were comparable between the two groups. However, there was a transient elevation in Mash1 protein in betamethasone-treated pups relative to controls at birth. These data suggest that prenatal GC treatment does not significantly impact the balance of glutamatergic and GABAergic neurogenesis in premature infants.
-
Neuroglobin (NGB), a protein highly expressed in the retina, has been shown to be up-regulated to protect neurons from hypoxic and ischemic injuries. It exhibits neuroprotective functions and plays an important role in the survival of neurons. Recent studies show that light-emitting diode (LED) white light emitted significant amounts of blue light (short-wavelength), which may be harmful to retinal cells, but the studies about biomarkers for evaluating the damage from LED white light are still insufficient. ⋯ The LED red light (625 nm), green light (527 nm) and blue light (453 nm) increased the expression of NGB and caused TdT-mediated dUTP nick-end labeling-positive cells, especially in the blue-light group. In addition, a negative correlation between NGB and rhodopsin was observed. These findings suggested that there was a correlation between NGB expression and the severity of the retinal damage, indicating NGB's potential function as a biological marker of retinal damage induced by LED light.
-
We tested the hypothesis that decreasing the control level of O2 from 95% to 40% reduces tissue partial pressure of oxygen (pO2), decreases extracellular nitric oxide (NO) and decreases intracellular superoxide (O2(-)) while maintaining viability in caudal solitary complex (cSC) neurons in slices (∼300-400 μm; neonatal rat P2-22; 34-37°C). We also tested the hypothesis that normobaric hyperoxia is a general stimulant of cSC neurons, including CO2-excited neurons. Whole-cell recordings of cSC neurons maintained in 40% O2 were comparable to recordings made in 95% O2 in duration and quality. ⋯ Likewise, a higher incidence of CO2-inhibited and lower incidence of CO2-excited neurons were observed in 85-95% O2. 82% of O2-excited neurons were also CO2-chemosensitive; CO2-excited (86%) and CO2-inhibited neurons (84%) were equally stimulated by hyperoxia. Our findings demonstrate that chronic (hours) and acute (minutes) exposure to hyperoxia stimulates firing rate in the majority of cSC neurons, most of which are also CO2 chemosensitive. Our findings support the hypothesis that recurring exposures to acute hyperoxia and hyperoxic reoxygenation-a repeating surge in tissue pO2-activate redox and nitrosative signaling mechanisms in CO2-chemosensitive neurons that alter expression of CO2 chemosensitivity (e.g., increased expression of CO2-inhibition) compared to sustained hyperoxia (85-95% O2).
-
Previous studies on the neural basis of insight reflected weak consistency except for the anterior cingulate cortex. The present work adopted the semantic and homophonic punny riddle to explore the uniformity and nonuniformity of neural activities correlated to different insight problem solving. ⋯ However, during -400 to 0 ms before the riddles were solved, the semantic punny riddles induced a positive event-related potential (ERP) deflection over the temporal cortex for retrieving the extensive semantic information, while the homophonic punny riddles induced a positive ERP deflection over the temporal cortex and a negative one in the left frontal cortex which might reflect the semantic and phonological information processing respectively. Our study indicated that different insight problem solving should have the same cognitive process of detecting cognitive conflicts, but have different ways to solve the conflicts.
-
Pyrroloquinoline quinone (PQQ), a redox cofactor in the mitochondrial respiratory chain, has been shown to protect neurons against glutamate-induced damage both in vitro and in vivo. In this study, specific inhibitors to each of the mitochondrial complexes were used to find out which reactive oxygen species (ROS)-generating sites could be affected by PQQ. Then we established an in vitro model of Parkinson's disease (PD) by exposing cultured SH-SY5Y dopaminergic cells to rotenone, a complex I inhibitor. ⋯ Meanwhile, PQQ up-regulated the gene expression of Ndufs 1, 2, and 4 (complex I subunits), and increased mitochondrial viability and mitochondrial DNA content. Furthermore, PQQ pretreatment activated ERK1/2 phosphorylation in rotenone-injured SH-SY5Y cells, while ERK1/2 inhibition suppressed PQQ neuroprotection. All the results suggested that PQQ could protect SH-SY5Y cells against rotenone injury by reducing ROS production and maintaining mitochondrial functions through activation of ERK1/2 pathway.