Neuroscience
-
Increased reactive oxygen species generation and mitochondrial dysfunction occur during ethanol hangover. The aim of this work was to study the effect of melatonin pretreatment on motor performance and mitochondrial function during ethanol hangover. Male mice received melatonin solution or its vehicle in drinking water during 7 days and i.p. injection with EtOH (3.8 g/kg BW) or saline at the eighth day. ⋯ No differences were observed in nNOS protein expression, while iNOS expression was increased in the melatonin group. Increased NO production by melatonin could be involved in the decrease of succinate-dependent oxygen consumption and the inhibition of complex IV observed in our study. Melatonin seems to act as an antioxidant agent in the ethanol hangover condition but also exhibited some dual effects related to NO metabolism.
-
Intramuscular injection of nerve growth factor (NGF) in healthy humans mimics some of the symptoms of myofascial temporomandibular disorders (M-TMD). We hypothesized that NGF induces a prolonged myofascial mechanical sensitization by increasing peripheral N-methyl-d-aspartate (NMDA) receptor expression, leading to an enhanced response of muscle nociceptors to endogenous glutamate. Behavioral experiments with an injection of NGF (25 μg/ml, 10 μl) into the masseter muscle reduced the mechanical withdrawal threshold for 1 day in male rats and 5 days in female rats. ⋯ In healthy men and women, comparable basal expression levels of NR2B and SP were found in peripheral fibers from masseter muscle microbiopsies. This study suggests that NGF-induced sensitization of masseter nociceptors is mediated, in part, by enhanced peripheral NMDA receptor expression. Measurement of peripheral NMDA receptor expression may be useful as a biomarker for M-TMD pain.
-
Traumatic spinal cord injury induces a long-standing inflammatory response in the spinal cord tissue, leading to a progressive apoptotic death of spinal cord neurons and glial cells. We have recently demonstrated that immediate treatment with the antioxidants N-acetyl-cysteine (NAC) and acetyl-l-carnitine (ALC) attenuates neuroinflammation, induces axonal sprouting, and reduces the death of motoneurons in the vicinity of the trauma zone 4weeks after initial trauma. The objective of the current study was to investigate the effects of long-term antioxidant treatment on the survival of descending rubrospinal neurons after spinal cord injury in rats. ⋯ Treatment also decreased the expression of BAX, caspase 3, OX42 and ED1 after 2 weeks. After 8 weeks, treatment decreased immunoreactivity for OX42, whereas it was increased for 5HT. In conclusion, this study provides further insight in the effects of treatment with NAC and ALC on descending pathways, as well as short- and long-term effects on the spinal cord trauma zone.
-
Neuro-glucostasis is required for normal expression of the steroid positive-feedback-induced preovulatory pituitary luteinizing hormone (LH) surge, a critical element of female reproduction. Glucoprivic signals from the caudal hindbrain restrain this surge, but the cellular source of this stimulus is unclear. Norepinephrine (NE) exerts well-defined stimulatory effects on the reproductive neuroendocrine axis. ⋯ The present studies demonstrate that hindbrain glucoprivation inhibits the LH surge, in part, by reducing preoptic noradrenergic input, and furthermore implicate A2 neurons as a source of this altered signal. Results also suggest that AMPK sensor deactivation does not supersede the impact of pharmacological inhibition of glucose catabolism on A2 cell function nor afferent signaling of hindbrain glucopenia on GnRH neurons. Further studies are needed to determine if decreased AMPK activation in these cell populations reflect compensatory gain in positive energy balance and/or direct effects of estrogen on AMPK.
-
Acute intermittent hypoxia (AIH) induces phrenic long-term facilitation (pLTF) by a mechanism that requires spinal serotonin (5-HT) receptor activation and NADPH oxidase (NOX) activity. Here, we investigated whether: (1) spinal nitric oxide synthase (NOS) activity is necessary for AIH-induced pLTF; (2) episodic exogenous nitric oxide (NO) is sufficient to elicit phrenic motor facilitation (pMF) without AIH (i.e. pharmacologically); and (3) NO-induced pMF requires spinal 5-HT2B receptor and NOX activation. In anesthetized, mechanically ventilated adult male rats, AIH (3 × 5-min episodes; 10% O2; 5 min) elicited a progressive increase in the amplitude of integrated phrenic nerve bursts (i.e. pLTF), which lasted 60 min post-AIH (45.1 ± 8.6% baseline). ⋯ SNP-induced pMF was blocked by a 5-HT2B receptor antagonist (SB206553), a superoxide dismutase mimetic (MnTMPyP), and two NOX inhibitors (apocynin and DPI). Neither pLTF nor pMF was affected by pre-treatment with a protein kinase G (PKG) inhibitor (KT-5823). Thus, spinal nNOS activity is necessary for AIH-induced pLTF, and episodic spinal NO is sufficient to elicit pMF by a mechanism that requires 5-HT2B receptor activation and NOX-derived ROS formation, which indicates AIH (and NO) elicits spinal respiratory plasticity by a nitrergic-serotonergic mechanism.