Neuroscience
-
As a consequence of an ischemic episode, energy production is disturbed, leading to neuronal cell death. Despite intensive research, the quest for promising neuroprotective drugs has largely failed, not only because of ineffectiveness, but also because of serious side-effects and dosing difficulties. Acetyl-l-carnitine (ALC) is an essential nutrient which plays a key role in energy metabolism by transporting fatty acids into mitochondria for β-oxidation. ⋯ This finding paralleled the histological analysis: ALC pretreatment resulted in the reappearance of dendritic spines on the CA1 pyramidal cells. Our data demonstrate that ALC administration can restore hippocampal function and spine density. ALC probably acts by enhancing the aerobic metabolic pathway, which is inhibited during and following ischemic attacks.
-
Oligodendrocyte precursor cells (OPC) are glial cells that metamorphose into myelinating oligodendrocytes during embryogenesis and early stages of post-natal life. OPCs continue to divide throughout adulthood and some eventually differentiate into oligodendrocytes in response to demyelinating lesions. ⋯ In this review, we summarize the interwoven factors and cascades that promote the activation, recruitment and differentiation of OPCs into myelinating oligodendrocytes in the adult brain based mostly on results found in the study of demyelinating diseases. The goal of the review was to draw a complete picture of the transformation of OPCs into mature oligodendrocytes to facilitate the study of this transformation in both the normal and diseased adult brain.
-
The molecular and cellular mechanisms, which coordinate the critical stages of brain development to reach a normal structural organization with appropriate networks, are progressively being elucidated. Experimental and clinical studies provide evidence of the occurrence of developmental alterations induced by genetic or environmental factors leading to the formation of aberrant networks associated with learning disabilities. Moreover, evidence is accumulating that suggests that also late-onset neurological disorders, even Alzheimer's disease, might be considered disorders of aberrant neural development with pathological changes that are set up at early stages of development before the appearance of the symptoms. ⋯ In the present review we focus on (1) aspects of neurogenesis with relevance to aging; (2) neurodegenerative disease (NDD)-associated proteins/pathways in the developing brain; and (3) further pathways of the developing or neurodegenerating brains that show commonalities. Elucidation of complex pathogenetic routes characterizing the earliest stage of the detrimental processes that result in pathological aging represents an essential first step toward a therapeutic intervention which is able to reverse these pathological processes and prevent the onset of the disease. Based on the shared features between pathways, we conclude that prevention of NDDs of the elderly might begin during the fetal and childhood life by providing the mothers and their children a healthy environment for the fetal and childhood development.
-
Deficient reelin signaling leads to characteristic layering malformations in the cerebral cortex and causes polarity defects of cortical neurons. Since the discovery of reelin much has been learned about the molecular mechanisms that underlie the characteristic defects of layering defects in the reeler mutant. More recent studies provided insights in the crosstalk between reelin signaling and molecular pathways that control polarity development of radially migrating neurons. The present review summarizes and discusses recent findings on the role of reelin in modulating polarization and process orientation of neurons in the neocortex and hippocampus.
-
Auditory information plays an important role in fine motor control such as speech and musical performance. The purpose of this study was to assess expertise-dependent differences in the role of temporal information of auditory feedback in the production of sequential movements. Differences in motor responses to the transient delay of tone production during musical performance between expert pianists and non-musicians were evaluated. ⋯ These distinct differences between groups suggest that extensive musical training influences feedback control in sequential finger movements. Furthermore, there was a significant positive correlation between the age at which the expert pianists commenced their musical training and the amount of disruption. Overall, these findings suggest that expert pianists have a higher level of robustness against perturbations and depend less on auditory feedback during the performance of sequential movements.