Neuroscience
-
High accumulation of D-2-hydroxyglutaric acid (D-2-HG) is the biochemical hallmark of patients affected by the inherited neurometabolic disorder D-2-hydroxyglutaric aciduria (D-2-HGA). Clinically, patients present neurological symptoms and basal ganglia injury whose pathophysiology is poorly understood. We investigated the ex vivo effects of intrastriatal administration of D-2-HG on important parameters of redox status in the striatum of weaning rats. ⋯ Vacuolization, lymphocytic infiltrates and macrophages indicating brain damage were also observed in the striatum of rats injected with D-2-HG. The present data provide in vivo solid evidence that D-2-HG disrupts redox homeostasis and causes histological alterations in the rat striatum probably mediated by NMDA overstimulation and RNS production. It is therefore presumed that disturbance of redox status may contribute at least in part to the basal ganglia alterations characteristic of patients affected by D-2-HGA.
-
When performing self-paced movements in a fatigued state, internal models can predict the mechanical effects of muscle fatigue. Yet, it is unclear if this is still true when movements are submitted to additional constraints. The purpose of the present study was to investigate the Central Nervous System's (CNS) capacity to integrate fatigue signals into forward models' prediction processes when the movement to perform is unpredictable and temporally constrained. ⋯ While the fatigue protocol resulted in significant alterations of arm flexion peak accelerations, APAs were not modified post-fatigue as compared to control trials. It is proposed that with unpredictable and temporally constrained movements, the CNS cannot incorporate fatigue signals in internal models' prediction processes to reweight the motor information contained in the efference copy. It is also suggested that APA implementation is based on predictive processes occurring in internal models located upstream from M1.
-
The process of glutamate release, activity, and reuptake involves the astrocyte, the presynaptic and postsynaptic neurons. Glutamate is released into the synapse and may occupy and activate receptors on both neurons and astrocytes. Glutamate is rapidly removed from the synapse by a family of plasma membrane excitatory amino acid transporters (EAATs), also localized to neurons and astrocytes. ⋯ Expression of EAAT1 protein on neurons may be due to the hypoxia associated with the postmortem interval, and requires further confirmation. The localization of EAATs on the astrocytic plasma membrane and adjacent to excitatory synapses is consistent with the function of facilitating glutamate reuptake and limiting glutamate spillover. Establishment that EAAT1 and EAAT2 can be measured at the EM level in human postmortem tissues will permit testing of hypotheses related to these molecules in diseases lacking analogous animal models.
-
Cocaine- and amphetamine-regulated transcript (CART) is a neuropeptide that plays neuroprotective roles in cerebral ischemia and reperfusion (I/R) injury in animal models or oxygen and glucose deprivation (OGD) in cultured neurons. Recent data suggest that intranasal CART treatment facilitates neuroregeneration in stroke brain. However, little is known about the effects of post-treatment with CART during the neuronal recovery after OGD and reoxygenation in cultured primary cortical neurons. ⋯ This effect depends on pleiotrophin (PTN) as siRNA-mediated PTN knockdown totally abolished the increase in CART-stimulated GAP43 protein levels. In summary, our findings demonstrate that CART repairs the neuronal injury after OGD by facilitating neurite outgrowth through PTN-dependent pathway. The role for CART in neurite outgrowth makes it a new potential therapeutic agent for the treatment of neurodegenerative diseases.
-
Hydrocephalus is caused by the accumulation of cerebrospinal fluid (CSF) in the cerebral ventricular system which results in an enlargement of the cranium due to increased intraventricular pressure. The increase in pressure within the brain typically results in sloughing of ciliated ependymal cells, loss of cortical gray matter, and increased gliosis. Congenital hydrocephalus is associated with several syndromes including primary ciliary dyskinesia (PCD), a rare, genetically heterogeneous, pediatric syndrome that results from defects in motile cilia and flagella. ⋯ Alterations in astrocytosis, microglial activation, myelination, and the neuronal population were identified and are generally more severe on the C57BL/6J background. Analysis of ependymal ciliary clearance ex vivo and CSF flow in vivo demonstrate a physiological defect in nm1054 and bgh mice on both genetic backgrounds, indicating that abnormal cilia-driven flow is not the sole determinant of the severity of hydrocephalus in these models. These results suggest that genetic modifiers play an important role in susceptibility to severe PCD-associated hydrocephalus.