Neuroscience
-
Myelination by oligodendrocytes is a highly specialized process that relies on intimate interactions between the axon and the oligodendrocytes. Astrocytes have an important part in facilitating myelination in the CNS, however, comparatively less is known about how they affect myelination. This review therefore summarizes the literature and explores lingering questions surrounding differences between white matter and gray matter astrocytes, how astrocytes support myelination, how their dysfunction in pathological states contributes to myelin pathologies and how astrocytes may facilitate remyelination. ⋯ Dysfunctional astrocytes aberrantly affect oligodendrocytes, as exemplified by a number of leukodystrophies in which astrocytic pathology is known as the direct cause of myelin pathology. Conversely, in primary demyelinating diseases, such as multiple sclerosis, astrocytes may facilitate remyelination. We suggest that specific manipulation of astrocytes could help prevent myelin pathologies and successfully restore myelin sheaths after demyelination.
-
The myelination of axons in the central nervous system (CNS) is essential for nervous system formation, function and health. CNS myelination continues well into adulthood, but not all axons become myelinated. Unlike the peripheral nervous system, where we know of numerous axon-glial signals required for myelination, we have a poor understanding of the nature or identity of such molecules that regulate which axons are myelinated in the CNS. ⋯ We discuss families of molecules with specific functions at different stages of synapse formation and address studies that implicate the same factors during axon-OPC synapse formation and myelination. We also address the possibility that the function of such synapses might directly regulate the myelinating behavior of oligodendrocyte processes in vivo. In the future it may be of benefit to consider these similarities when taking a candidate-based approach to dissect mechanisms of CNS myelination.
-
Inhibitory control and cognitive flexibility are two key executive functions that develop in childhood and adolescence, increasing one's capacity to respond dynamically to changing external demands and refrain from impulsive behaviors. These gains evolve in concert with significant brain development. Magnetic resonance imaging studies have identified numerous frontal and cingulate cortical areas associated with performance on inhibition tasks, but less is known about the involvement of the underlying anatomical connectivity, namely white matter. ⋯ Pearson's correlations confirmed associations between higher FA of frontal projections of the corpus callosum with poorer inhibitory performance (independent of age), though associations with Switching were not significant. Post-hoc evaluation suggested that FA of orbital and anterior frontal projections of the corpus callosum also mediated performance differences across conditions, which may reflect differences in self-monitoring or strategy use. These findings suggest a link between the development of inhibition and cognitive control with that of the underlying white matter, and may help to identify deviations of neurobiology in adolescent psychopathology.
-
Oligodendrocyte progenitor cells (OPCs) have the ability to divide or to growth arrest and differentiate into myelinating oligodendrocytes in the developing brain. Due to their high number and the persistence of their proliferative capacity in the adult brain, OPCs are being studied as potential targets for myelin repair and also as a potential source of brain tumors. This study addresses the molecular mechanisms regulating the transcriptional changes occurring at the critical transition between proliferation and cell cycle exit in cultured OPCs. ⋯ H2afz). Silencing of c-Myc was associated with decreased histone acetylation at target gene promoters and consequent decrease of gene transcripts. c-Myc silencing also induced a global increase of repressive histone methylation and premature peripheral nuclear chromatin compaction while promoting the progression towards differentiation. We conclude that c-Myc is an important modulator of the transition between proliferation and differentiation of OPCs, although its decrease is not sufficient to induce progression into a myelinating phenotype.