Neuroscience
-
Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a type I transmembrane protein reported to have neuroprotective effects in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We investigated whether GPNMB is also neuroprotective against brain ischemia-reperfusion injury (IRI). Focal ischemia/reperfusion injury was induced via filament middle cerebral artery occlusion (MCAO) for 2h, followed by reperfusion upon withdrawal of the filament. ⋯ Furthermore, recombinant GPNMB also decreased infarction volume. These results indicate that GPNMB protected neurons against IRI, and phosphor-Akt and phosphor-ERK might be a part of the protective mechanisms, and that the neuroprotective effect of GPNMB was seemingly induced by the extracellular sequence of GPNMB. In conclusion, these findings indicate that GPNMB has neuroprotective effects against IRI, via phosphorylation of ERK1/2 and Akt, suggesting that GPNMB may be a therapeutic target for ischemia-reperfusion injuries.
-
Stressful events promote a wide range of neurotransmitter and neuroendocrine changes, which likely serve in an adaptive capacity. However, with repeated stressor exposure, behavioral disturbances, such as anxiety and depression, may develop. Moreover, re-exposure to a stressor for some time following an initial aversive experience may instigate especially pronounced neurochemical variations that favor the emergence of depression and anxiety. ⋯ In the PFC an acute stressor treatment increased IL-1R expression, but otherwise had little effect. In a plus-maze test, stressed male mice displayed markedly reduced latencies to the open arms that was evident in a test 6 weeks later irrespective of whether mice were re-exposed to a stressor, whereas in females this outcome was less evident. These studies are consistent with the perspective that female mice are relatively resilient toward stressor-induced cytokine elevations even though in humans females are generally more prone to developing mood disturbances.
-
Alzheimer's disease (AD) is a progressive and degenerative disorder accompanied by cognitive impairment, but effective strategies against AD are currently not available. Interestingly, glucagon-like peptide-1 (GLP-1) used in type 2 diabetes mellitus (T2DM) has shown neuroprotective effects in preclinical studies of AD. Lixisenatide, an effective GLP-1 receptor (GLP-1R) agonist with much longer half life than GLP-1, has been licensed in the EU as a treatment for T2DM. ⋯ In the present study, we report for the first time the effects of lixisenatide on the amyloid β (Aβ) protein-induced impairments in spatial learning and memory of rats, and investigated its electrophysiological and molecular mechanisms. We found that: (1) bilateral intrahippocampal injection of Aβ25-35 resulted in a significant decline in spatial learning and memory of rats, as well as a suppression of in vivo hippocampal long-term potentiation (LTP); (2) lixisenatide treatment effectively prevented the Aβ25-35-induced impairments; (3) lixisenatide inhibited the Aβ25-35 injection-induced activation of glycogen synthase kinase 3β (GSK3β), with a significant increase in the phosphorylation of ser9 and a significant decrease in the phosphorylation of Y216. These results indicate that lixisenatide, by affecting the PI3K-Akt-GSK3β pathway, can prevent Aβ-related impairments in synaptic plasticity and spatial memory of rats, suggesting that lixisenatide may be a novel and effective treatment for AD.
-
The lateral hypothalamic area (LHA) constitutes a large component of the hypothalamus, and has been implicated in several aspects of motivated behavior. The LHA is of particular relevance to behavioral state control and the maintenance of arousal. Due to the cellular heterogeneity of this region, however, only some subpopulations of LHA cells have been properly anatomically characterized. ⋯ In the juxtaparaventricular area, however, a discrete group of TRH-immunoreactive cells were also stained with antisera against enkephalin and urocortin 3. Innervation from the metabolically sensitive hypothalamic arcuate nucleus was investigated by double-staining for peptide markers of the two centrally projecting groups of arcuate neurons, agouti gene-related peptide and α-melanocyte-stimulating hormone, respectively; both populations of terminals were observed forming close appositions on TRH cells in the LHA. The present study indicates that TRH-expressing cells form a unique population in the LHA that may serve as a link between metabolic signals and the generation of arousal.
-
We previously demonstrated that inactivation of Rho-kinase by hydroxyfasudil could impact N-methyl-d-aspartate (NMDA) excitatory interneurons in the hippocampus and attenuate the spatial learning and memory dysfunction of rats caused by chronic forebrain hypoperfusion ischemia. Complementary interactions between the excitatory neurotransmitter glutamate and the inhibitory neurotransmitter GABA form the molecular basis of synaptic plasticity and cognitive performance. However, whether the GABAergic inhibitory interneurons are involved in the mechanisms underlying these processes remains unclear. ⋯ Moreover, the mRNA and protein levels of GABAA and GABAB in three brain regions after ischemia were markedly decreased, and hydroxyfasudil could up-regulate all mRNA and protein expression levels in these areas except for GABAA mRNA in the cerebral cortex and striatum. Using phosphorylation antibodies against specific sites on the GABAA and GABAB receptors, we further demonstrated that hydroxyfasudil could inhibit GABAergic interneuron phosphorylation triggered by the theta burst stimulation. In summary, our results indicated that the inactivation of Rho-kinase could enhance GABAA and GABAB expressions by different mechanisms to guarantee the induction of hippocampal LTP, and it could decrease the phosphorylation level of GABAergic inhibitory interneurons to promote the LTP induction rate and magnitude, hence improving the cognitive deficit suffered after chronic forebrain ischemia.