Neuroscience
-
Enhanced brain apoptosis (neurons and glia) may be involved in major depression (MD) and schizophrenia (SZ), mainly through the activation of the intrinsic (mitochondrial) apoptotic pathway. In the extrinsic death pathway, pro-apoptotic Fas-associated death domain (FADD) adaptor and its non-apoptotic p-Ser194 FADD form have critical roles interacting with other death regulators such as phosphoprotein enriched in astrocytes of 15 kDa (PEA-15) and extracellular signal-regulated kinase (ERK). The basal status of FADD (protein and messenger RNA (mRNA)) and the effects of psychotropic drugs (detected in blood/urine samples) were first assessed in postmortem prefrontal cortex of MD and SZ subjects (including a non-MD/SZ suicide group). ⋯ Cortical p-PEA-15 was not changed whereas PEA-15 was increased mainly in antidepressant-treated subjects (16-20%). Interestingly, cortical p-ERK1/2/ERK1/2 ratio was reduced (33%) in antidepressant-free when compared to antidepressant-treated MD subjects. The neurochemical adaptations of brain FADD (increased p-FADD and pro-survival p-FADD/FADD ratio), as well as its interaction with PEA-15, could play a major role to counteract the known activation of the mitochondrial apoptotic pathway in MD.
-
Interpersonal synchrony is characterized by a temporary alignment of periodic behaviors with another person. This process requires that at least one of the two individuals monitors and adjusts his/her movements to maintain alignment with the other individual (the referent). Interestingly, recent research on interpersonal synchrony has found that people who are motivated to befriend an unfamiliar social referent tend to automatically synchronize with their social referents, raising the possibility that synchrony may be employed as an affiliation tool. ⋯ Overall, our behavioral results showed that the referent of a synchrony task expressed greater perceived synchrony and greater social affiliation toward a synchronous partner (i.e., one displaying low mean asynchrony and/or a narrow asynchrony range) than with an asynchronous partner (i.e., one displaying high mean asynchrony and/or high asynchrony range). Our neuroimaging study extended these results by demonstrating involvement of brain areas implicated in social cognition, embodied cognition, self-other expansion, and action observation as correlates of interpersonal synchrony (vs. asynchrony). These findings have practical implications for social interaction and theoretical implications for understanding interpersonal synchrony and social coordination.
-
Evidence is emerging that reactive oxygen species (ROS)-induced oxidative stress has a crucial role in the pathogenesis of neurodegenerative diseases. To find the effective therapies for neurodegenerative diseases, evaluation of the relevant molecular mechanisms is necessary. In the current study, we investigated the effects of hydrogen peroxide (H2O2)-induced oxidative stress on SK-N-MC cell death with focus on HIF-1α, Foxo3a and Notch1 signaling factors. ⋯ In contrast, Notch inhibition resulted in HIF-1α/Foxo3a signaling pathway up-regulation, suggesting the bidirectional crosstalk between HIF-1α and Notch1. These results collectively suggest that ROS are involved in activation of both the defensive and pro-apoptotic pathways encompassing HIF-1α and p53, respectively. Regarding the HIF-1α-mediated neuroprotection role, elucidation of the molecular mechanism would certainly be essential for effective drug design against neurodegenerative diseases.
-
The temporo-parietal (TP) white matter connections between the inferior parietal lobule and superior temporal gyrus as part of the superior longitudinal fasciculus/arcuate fasciculus (SLF/AF) or middle longitudinal fasciculus (MdLF) have been studied in prior diffusion tensor tractography (DTT) studies. However, few studies have been focusing on the higher TP connections of the superior parietal lobule with the temporal lobe. These higher TP connections have been shown to have a role in core processes such as attention, memory, emotions, and language. ⋯ Using a high resolution DTT technique, we demonstrate for the first time, the trajectory of a long fiber bundle connectivity between the SPL and posterior temporal lobe, called the SLF/AF TP-SPL (or the TP-SPL), bilaterally in five healthy adult human brains. We also demonstrate the trajectory of the vertically oriented posterior TP connections, interconnecting the inferior parietal lobule (IPL) with the posterior temporal lobe (TP-IPL) in relation to the TP-SPL, arcuate fasciculus and other major language pathways. In the current study, for the first time, we categorized the TP connections into the anterior and posterior connectivity groups and subcategorized each one into the SPL or IPL connections.
-
Electrocortical and hemodynamic measures reliably identify enhanced activity in the ventral and dorsal visual cortices during the perception of emotionally arousing versus neutral images, an effect that may reflect directive feedback from the subcortical amygdala. However, other brain regions strongly modulate visual attention, such as frontal eye fields (FEF) and intraparietal sulcus (IPS). Here we employ rapid sampling of BOLD signal (4 Hz) in the amygdala, fusiform gyrus (FG), FEF and IPS in 42 human participants as they viewed a series of emotional and neutral natural scene photographs balanced for luminosity and complexity, to test whether emotional discrimination is evident in dorsal structures prior to such discrimination in the amygdala and FG. ⋯ Granger causality estimates yield stronger directional connectivity from IPS to FEF than the reverse in this emotional picture paradigm. Consistent with a reentrant perspective of emotional scene perception, greater directional connectivity was found from the amygdala to FG compared to the reverse. These data support a perspective in which the registration of emotional scene content is orchestrated by the amygdala and rostral inferotemporal visual cortex.