Neuroscience
-
To investigate whether resting-state functional connectivity (FC) differed in the default mode network (DMN) in stroke patients with and without post-stroke cognitive impairment (PSCI vs. Non-PSCI) and to explore the relationship between DMN connectivity and the cognitive performance in stroke patients. ⋯ Our findings may be helpful for facilitating further understanding of the potential mechanism underlying PSCI, and suggests that resting-state DMN connectivity could serve as neuroimaging biomarkers for future interventional studies.
-
The purpose of this study was to investigate functional alterations of the brain in the early stage of spinal cord injury (SCI) and further investigate how these functional alterations relate to SCI patients' sensorimotor functions. ⋯ Our findings provide evidence that SCI can induce significant regional and network-level functional alterations in the early stage of the disease. We hypothesized these alterations may be an adaptive phenomenon following SCI, reflecting a compensatory mechanism during the early stage of SCI.
-
Compared to DBA/2J (D2), C57BL/6J (B6) inbred mice exhibit strong morphine preference when tested using a two-bottle choice drinking paradigm. A morphine preference quantitative trait locus (QTL), Mop2, was originally mapped to proximal chromosome (Chr) 10 using a B6xD2 F2 intercross population, confirmed with reciprocal congenic strains and fine mapped with recombinant congenic strains. These efforts identified a ∼ 10-Million base pair (Mbp) interval, underlying Mop2, containing 35 genes. ⋯ Analysis of Rgs17 protein levels also revealed both between-strain and within-strain differences in comparisons of saline- and morphine-treated B6 and D2 mice. Results suggest that the Mop2 QTL represents the combined influence of multiple genetic variants on morphine preference in these two strains. Relative contributions of each variant remain to be determined.
-
Cornea-evoked eyeblinks maintain tear film integrity on the ocular surface in response to dryness and protect the eye from real or potential damage. Eyelid movement following electrical stimulation has been well studied in humans and animals; however, the central neural pathways that mediate protective eyeblinks following natural nociceptive signals are less certain. The aim of this study was to assess the role of the trigeminal subnucleus interpolaris/caudalis (Vi/Vc) transition and subnucleus caudalis/upper cervical cord (Vc/C1) junction regions on orbicularis oculi electromyographic (OOemg) activity evoked by ocular surface application of hypertonic saline or exposure to bright light in urethane anesthetized male rats. ⋯ Lidocaine injected into the trigeminal ganglion blocked completely the OOemg responses to hypertonic saline and light indicating a trigeminal afferent origin. Synaptic blockade by cobalt chloride of the Vi/Vc or Vc/C1 region greatly reduced OOemg responses to hypertonic saline and bright light. These data indicate that OOemg activity evoked by natural stimuli known to cause irritation or discomfort in humans depends on a relay in both the Vi/Vc transition and Vc/C1 junction regions.
-
Transient receptor potential vanilloid 1 (TRPV1)-containing afferent neurons convey nociceptive signals and play an essential role in pain sensation. Exposure to nerve growth factor (NGF) rapidly increases TRPV1 activity (sensitization). In the present study, we investigated whether treatment with the selective cannabinoid receptor 1 (CB1) agonist arachidonyl-2'-chloroethylamide (ACEA) affects NGF-induced sensitization of TRPV1 in adult mouse dorsal root ganglion (DRG) afferent neurons. ⋯ Further, pretreatment with ACEA inhibited NGF-induced phosphorylation of AKT. Blocking PI3 kinase activity also attenuated the NGF-induced increase in the number of neurons that responded to capsaicin. Our results indicate that the analgesic effect of CB1 activation may in part be due to inhibition of NGF-induced sensitization of TRPV1 and also that the effect of CB1 activation is at least partly mediated by attenuation of NGF-induced increased PI3 signaling.