Neuroscience
-
Cerebral ischemia-reperfusion (IR) injury is a complex pathological process that can cause irreversible brain damage, neuronal injury or death from brain ischemia. Rac1 GTPase is involved in cellular protection from IR injury. However, the mechanism of protection and the molecules affected by Rac1 remain to be defined. ⋯ This study demonstrated the importance of Rac1 regulation of Notch2 in mediating cerebral IR-induced production of injurious reactive oxygen species and cell death in vitro and in vivo in the short term. Targeted inhibition of Rac1 or Notch2 is new avenue for in vivo therapy aimed at protecting organs at risk from IR injury.
-
Learning and memory impairment is one of the most challenging complications of cirrhosis and present treatments are unsatisfactory. The exact mechanism of cirrhosis cognitive dysfunction is unknown. Pregnenolone sulfate (PREGS) is an excitatory neurosteroid that acts as a N-methyl-D-aspartate (NMDA) receptor agonist and GABAA receptor antagonist. ⋯ PREGS effects on memory of cirrhotic rats were antagonized by DAP5. RT-PCR findings have shown that hippocampal relative BDNF mRNA expression was up-regulated in PREGS-treated groups in comparison with the BDL group (P<0.001). Our findings suggest that PREGS has a memory-enhancing effect in cirrhosis memory deficit in acute therapy and this effect may be through NMDA (glutamate) receptor involvement and BDNF mRNA expression.
-
The major excitatory neurotransmitter Glutamate acts on both ionotropic and metabotropic glutamate receptors (mGluRs) in the central nervous system. mGluR5, a member of the group I mGluR family is widely expressed throughout the brain and plays important roles in a variety of neuronal processes including various forms of synaptic plasticity. This receptor is also involved in various neuropsychiatric disorders, viz., Fragile X syndrome, autism etc. It has been reported that mGluR5 undergoes desensitization and subsequently internalization on ligand exposure in various cell types. ⋯ We also show here that the recycling of mGluR5 is dependent on protein phosphatases. Our data suggest that mGluR5 recycling is completely dependent on the activity of PP2A whereas, PP2B has partial effect on this process. Thus our study suggests that mGluR5 recycles back to the cell surface after ligand-dependent internalization and protein phosphatases that have been implicated in various forms of synaptic plasticity have differential effects on the recycling of mGluR5.
-
Absence seizures are known to result from disturbances within the cortico-thalamocortical network, which remains partially synchronous under normal conditions but switches to a state of hypersynchronicity and hyperexcitability during absence seizures. There is evidence to suggest that impaired GABAergic inhibitory function within the thalamus could contribute to the generation of hypersynchronous oscillations in some animal models of absence epilepsy. Recently, we demonstrated region-specific alterations in the tissue expression level of GABAA receptors (GABA(A)Rs) α1 and β2 subunits within the thalamus of the stargazer mouse model of absence epilepsy. ⋯ Furthermore, we investigated whether tissue expression of GABA(A)R subunits α4 and δ, which constitute part of tonic GABA(A)Rs in the VP region, is altered in the stargazer mouse. Semi-quantitative Western blotting showed a significant increase in GABA(A)R α4 and δ subunits in the VP region of stargazer thalamus, which would indicate an increase in tonic GABA(A)R expression. Our findings show that there are changes in the levels of both phasic and tonic GABA(A)Rs in the VP thalamus; altered GABAergic inhibition within the VP could be one of many mechanisms contributing to the generation of absence seizures in this model.
-
Bisabolol is a plant-derived monocyclic sesquiterpene alcohol with antinociceptive and antiinflammatory actions. However, molecular targets mediating these effects of bisabolol are poorly understood. In this study, using a two-electrode voltage-clamp and patch-clamp techniques and live cellular calcium imaging, we have investigated the effect of bisabolol on the function of human α7 subunit of nicotinic acetylcholine receptor (nAChR) in Xenopus oocytes, interneurons of rat hippocampal slices. ⋯ Furthermore, the specific binding of [(125)I] α-bungarotoxin was not attenuated by bisabolol. Choline-induced currents in CA1 interneurons of rat hippocampal slices were also inhibited with IC50 of 4.6 μM. Collectively, our results suggest that bisabolol directly inhibits α7-nAChRs via a binding site on the receptor channel.