Neuroscience
-
Sodium-dependent high-affinity amino-acid transporters play crucial roles in terminating synaptic transmission in the central nervous system (CNS). However, there is lack of information about the mechanisms underlying the regulation of amino-acid transport by fast-acting neuromodulators, like ATP. Here, we investigated whether activation of the ATP-sensitive P2X7 receptor modulates Na(+)-dependent high-affinity γ-aminobutyric acid (GABA) and glutamate uptake into nerve terminals (synaptosomes) of the rat cerebral cortex. ⋯ Uptake inhibition by BzATP (100 μM) was also attenuated by calmidazolium, which selectively inhibits Na(+) currents through the P2X7 receptor pore. In conclusion, disruption of the Na(+) gradient by P2X7 receptor activation downmodulates high-affinity GABA and glutamate uptake into rat cortical synaptosomes. Interference with amino-acid transport efficacy may constitute a novel target for therapeutic management of cortical excitability.
-
Neuro-vascular rearrangement occurs in brain disorders, including epilepsy. Platelet-derived growth factor receptor beta (PDGFRβ) is used as a marker of perivascular pericytes. Whether PDGFRβ(+) cell reorganization occurs in regions of neuro-vascular dysplasia associated with seizures is unknown. ⋯ Our descriptive study points to microvascular-pericyte changes in the epileptic pathology. The possible link between PDGFRβ(+) cells, neuro-vascular dysplasia and remodeling during seizures is discussed.
-
The insular cortex in rat is a longitudinal strip that runs along the rostral half of the rhinal fissure. The previous studies showed connections between the posterior insular cortex (PIC) and some major cardiovascular centers. Based on the stimulation site, electrical or chemical stimulation of the PIC induced an increase or a decrease in blood pressure (BP) and heart rate (HR). ⋯ In conclusion, there were five types of cardiovascular and five types of single-unit responses, to Glut microinjection into PIC, from which three types were correlated. The left side of the PIC is involved more in the cardiovascular functions. These data along with the fact that most recorded neurons responded to baroreceptor activation, might imply the presence of feedback systems in the PIC, producing irregularity in BP and HR.
-
Glucose concentration changes in the nucleus tractus solitarius (NTS) affect visceral function and metabolism by influencing central vagal circuits, especially inhibitory, GABAergic NTS neurons. Acutely elevated glucose can alter NTS neuron activity, and prolonged hyperglycemia and hypoinsulemia in animal models of type 1 diabetes results in plasticity of neural responses in the NTS. NTS neurons contributing to metabolic regulation therefore act as central glucose sensors and are functionally altered in type 1 diabetes. ⋯ After several days of hyperglycemia in STZ-treated mice, RNA expression of GCK, but not Kir6.2 or SUR1, was decreased versus controls in the dorsal vagal complex. Electrophysiological recordings in vitro indicated that neural responses to acute hyperglycemia, and synaptic responsiveness to blockade of GCK with glucosamine, were attenuated in GABAergic NTS neurons from STZ-treated mice, consistent with reduced molecular and functional expression of GCK in the vagal complex of hyperglycemic, STZ-treated mice. Altered autonomic responses to glucose in type 1 diabetes may therefore involve reduced functional GCK expression in the dorsal vagal complex.
-
Infection by the neurotropic agent Toxoplasma gondii alters rodent behavior and can result in neuropsychiatric symptoms in humans. Little is understood regarding the effects of infection on host neural processes but alterations to dopaminergic neurotransmission are implicated. We have previously reported elevated levels of dopamine (DA) in infected dopaminergic cells however the involvement of the host enzymes and fate of the produced DA were not defined. ⋯ In contrast, cellular DA packaging appeared unchanged in single-cell microamperometry experiments and only a fraction of the increased DA was accessible to high potassium-induced release. This study provides some understanding of how this parasite produces elevated DA within dopaminergic cells without the toxic ramifications of free cytosolic DA. The mechanism for synthesis and packaging of DA by T. gondii-infected dopaminergic cells may have important implications for the effects of chronic T. gondii infection on humans and animals.