Neuroscience
-
Neuroplasticity involves molecular and structural changes in central nervous system (CNS) throughout life. The concept of neural organization allows for remodeling as a compensatory mechanism to the early pathobiology of Alzheimer's disease (AD) in an attempt to maintain brain function and cognition during the onset of dementia. The hippocampus, a crucial component of the medial temporal lobe memory circuit, is affected early in AD and displays synaptic and intraneuronal molecular remodeling against a pathological background of extracellular amyloid-beta (Aβ) deposition and intracellular neurofibrillary tangle (NFT) formation in the early stages of AD. Here we discuss human clinical pathological findings supporting the concept that the hippocampus is capable of neural plasticity during mild cognitive impairment (MCI), a prodromal stage of AD and early stage AD.
-
Cancer therapies can be associated with significant central nervous system (CNS) toxicity. While radiation-induced brain damage has been long recognized both in pediatric and adult cancer patients, CNS toxicity from chemotherapy has only recently been acknowledged. Clinical studies suggest that the most frequent neurotoxic adverse effects associated with chemotherapy include memory and learning deficits, alterations of attention, concentration, processing speed and executive function. ⋯ Based on the important role of the hippocampus for maintenance of brain plasticity throughout life, several experimental studies have focused on the study of chemotherapy effects on hippocampal neurogenesis and associated learning and memory. An increasing body of literature from both animal studies and neuroimaging studies in cancer patients suggests a possible relationship between chemotherapy induced hippocampal damage and the spectrum of neurocognitive deficits and mood alterations observed in cancer patients. This review aims to briefly summarize current preclinical and neuroimaging studies that are providing a potential link between the neurotoxic effects of chemotherapy and hippocampal dysfunction, highlighting challenges and future directions in this field of investigation.
-
The hippocampus is strongly implicated in the psychotic symptoms of schizophrenia. Functionally, basal hippocampal activity (perfusion) is elevated in schizophrenic psychosis, as measured with positron emission tomography (PET) and with magnetic resonance (MR) perfusion techniques, while hippocampal activation to memory tasks is reduced. ⋯ We interpret these observations to implicate a reduction in the influence of a ubiquitous gene repressor, repressor element-1 silencing transcription factor (REST) in psychosis; REST is involved in the age-related maturation of the NMDA receptor from GluN2B- to GluN2A-containing NMDA receptors through epigenetic remodeling. These CA3 changes in psychosis leave the hippocampus liable to pathological increases in neuronal activity, feedforward excitation and false memory formation, sometimes with psychotic content.
-
We previously reported that inbred, genetically identical mice living in one enriched environment develop individual behavioral trajectories, indicating increasingly different levels of spatial exploratory behavior as quantified by roaming entropy. Cumulative roaming entropy (cRE) correlated positively with adult hippocampal neurogenesis, a type of plasticity involved in the flexible integration of new information into existing contexts (Freund et al., 2013). The study on which we report here was done in parallel to that first experiment, but here we acquired detailed observational data on the behavior of individual mice. ⋯ Adult neurogenesis could not be studied in the present cohort but we do know that under identical conditions, cumulative RE correlated positively with adult hippocampal neurogenesis. We can thus hypothesize that the mice with more exploratory experience in terms of areal coverage (as quantified by RE) and related greater levels of adult hippocampal plasticity, might also be the ones that were less involved in interactions within the group and, hence, more individualistic. While this remains to be confirmed experimentally, the present data suggest that the described mechanism of individualization, which has previously been shown to be hippocampus-dependent, has a social component.
-
Multiple sclerosis (MS) is a progressive inflammatory autoimmune disease that is characterized by demyelination and axonal damage in the nervous system. One obvious consequence is a cumulative loss of muscle control. However, cognitive dysfunction affects roughly half of MS sufferers, sometimes already early in the disease course. ⋯ However, in the late phase, LTP was impaired and LTP-related spatial memory was impaired. In contrast, LTD and hippocampus-dependent object recognition memory were unaffected. These data suggest that in an animal model of MS hippocampal function becomes compromised as the disease progresses.