Neuroscience
-
The brain of children affected by organic acidemias develop acute neurodegeneration linked to accumulation of endogenous toxic metabolites like glutaric (GA), 3-hydroxyglutaric (3-OHGA), methylmalonic (MMA) and propionic (PA) acids. Excitotoxic and oxidative events are involved in the toxic patterns elicited by these organic acids, although their single actions cannot explain the extent of brain damage observed in organic acidemias. The characterization of co-adjuvant factors involved in the magnification of early toxic processes evoked by these metabolites is essential to infer their actions in the human brain. ⋯ For all cases, this effect was partially prevented by KA and l-NAME, and completely avoided by SAC. These findings suggest that early damaging events elicited by organic acids involved in metabolic acidemias can be magnified by toxic synergism with QUIN, and this process is mostly mediated by oxidative stress, and in a lesser extent by excitotoxicity and nitrosative stress. Therefore, QUIN can be hypothesized to contribute to the pathophysiology of brain degeneration in children with metabolic acidemias.
-
Regulation of GABA release in the dorsal motor nucleus of the vagus (DMV) potently influences vagal output to the viscera. The presence of functional ionotropic glutamate receptors (iGluRs) on GABAergic terminals that rapidly alter GABA release onto DMV motor neurons has been suggested previously, but the receptor subtypes contributing to the response are unknown. We examined the effect of selective activation and inhibition of iGluRs on tetrodotoxin-insensitive, miniature inhibitory postsynaptic currents (mIPSCs) in DMV neurons using patch-clamp recordings in brainstem slices from mice. ⋯ The effect of NMDA was prevented by AMPA/KA receptor blockade, suggesting indirect involvement of NMDA receptors. The stimulatory effect of capsaicin on GABA release was prevented when AMPA/KA or NMDA, but not AMPA receptors were blocked. Results of these studies indicate that presynaptic NMDAR and KA receptors regulate GABA release in the DMV, representing a heterosynaptic arrangement for rapidly modulating parasympathetic output, especially when synaptic excitation is elevated.