Neuroscience
-
Mammalian target of rapamycin (mTOR) is a serine-threonine protein kinase that controls protein synthesis in the nervous system. Here, we characterized the role of protein synthesis regulation due to mTOR signaling in rat dorsal root ganglion (DRG) following plantar incision. ⋯ Vesicular glutamate transporter 2 (VGLUT2) expression was increased after the plantar incision, which was inhibited by rapamycin. These results demonstrated that tissue injury induces phosphorylation of mTOR and increased protein level of VGLUT2 in the DRG neurons. mTOR phosphorylation involves in maintenance of injury-induced thermal hypersensitivity.
-
Severe chronic stress can have a profoundly negative impact on the brain, affecting plasticity, neurogenesis, memory and mood. On the other hand, there are factors that upregulate neurogenesis, which include dietary antioxidants and physical activity. These factors are associated with biochemical processes that are also altered in age-related cognitive decline and dementia, such as neurotrophin expression, oxidative stress and inflammation. ⋯ The combination of dietary supplementation and exercise had multiple beneficial effects, as reflected in the number of doublecortin (DCX)-positive immature neurons in the dentate gyrus (DG), the sectional area of the DG and hippocampal CA1, as well as increased hippocampal BDNF messenger ribonucleic acid (mRNA) and serum vascular endothelial growth factor (VEGF) levels. In contrast, these benefits were not observed in chronically stressed animals exposed to either dietary supplementation or exercise alone. These findings could have important clinical implications for those suffering from chronic stress-related disorders such as major depression.