Neuroscience
-
The aim of the present work is to analyze how prenatal binge-like ethanol exposure to a moderate dose (2.0 g/kg; group Pre-EtOH) during gestational days (GD) 17-20 affects hydroelectrolyte regulatory responses. This type of exposure has been observed to increase ethanol consumption during adolescence (postnatal day 30-32). In this study we analyzed basal brain neural activity and basal-induced sodium appetite (SA) and renal response stimulated by sodium depletion (SD) as well as voluntary ethanol consumption as a function of vehicle or ethanol during late pregnancy. ⋯ In the experimental group, we also observed a significant increase in Fra-LI along the nucleus of the solitary tract (NTS) and in the central extended amygdala nuclei. In summary, moderate Pre-EtOH exposure produces long-lasting changes in brain organization, affecting basal activity of central extended amygdala nuclei, AVP neurons and the inhibitory areas of SA such as the NTS and the 5HT-DRN. These changes possibly modulate the above described variations in basal-induced drinking behaviors and renal regulatory responses.
-
Carbon monoxide (CO), like other gaseous neuromodulators, has a dual nature as both a toxic gas and a physiologically relevant signaling molecule. In the nervous system, high concentrations of CO can lead to neuronal injury while lower concentrations are found to be neuroprotective. The number of cellular targets affected by physiological concentrations of CO is rapidly growing and includes ion channels in various cell types. ⋯ This effect was mediated by the inhibition of voltage-gated calcium channels by CO. The general findings of CO acting as a hyperpolarizing signal and an inhibitor of neuronal excitability extended to B19 neurons. Taken together, these findings suggest that CO is a potent modulator of ion channels with broad implications for the modulation of neural activity in a wide range of neuron-types.
-
The amygdala is a heterogeneous group of nuclei that plays a role in emotional and social learning. As such, there has been increased interest in its development in adolescent animals, a period in which emotional/social learning increases dramatically. While many mechanisms of amygdala development have been studied, the role of cell proliferation during adolescence has received less attention. ⋯ We conclude that typical neurogenesis is not a feature of the adolescent amygdala. These findings point to several possibilities, including the possibility that DCX/BrdU cells are late-developing neural precursors, or a unique subtype of NG2 cell that is relatively resistant to stress. In contrast, many proliferating OPCs are significantly impacted by a short-lived stressor, suggesting consequences for myelination in the developing amygdala.
-
Autophagy, a tightly regulated lysosome-dependent catabolic pathway, is implicated in various pathological states in the nervous system. High-mobility group box 1 (HMGB1) is an inflammatory mediator known to be released into the local microenvironment from damaged cells. However, whether autophagy is induced and exogenous HMGB1 is involved in the process of spinal root avulsion remain unclear. ⋯ Inhibition of JNK or ERK activity significantly blocked the effect of HMGB1-induced autophagy in primary spinal neurons. Finally, HMGB1-induced autophagy increased cell viability in primary spinal neurons under oxygen-glucose deprivation conditions. The above results suggest that HMGB1 is a critical regulator of autophagy and HMGB1-induced autophagy plays an important role in protecting spinal neurons against injury, which may provide new insights into the pathophysiological process of spinal root avulsion.
-
Previous studies have indicated that sodium salicylate (SS) can cause hearing abnormalities through affecting the central auditory system. In order to understand central effects of the drug, we examined how a single intraperitoneal injection of the drug changed the level of subunits of the type-B γ-aminobutyric acid receptor (GABAB receptor) in the rat's inferior colliculus (IC). Immunohistochemical and western blotting experiments were conducted three hours following a drug injection, as previous studies indicated that a tinnitus-like behavior could be reliably induced in rats within this time period. ⋯ In contrast, no changes were observed in other brain structures such as the cerebellum. Thus, a coincidence existed between a structure-specific reduction in the level of GABAB receptor subunits in the IC and the presence of a tinnitus-like behavior. This coincidence likely suggests that a reduction in the level of GABAB receptor subunits was involved in the generation of a tinnitus-like behavior and/or used by the nervous system to restore normal hearing following application of SS.