Neuroscience
-
Previous studies have shown that nitric oxide can induce cysteine S-nitrosylation of total protein in synaptosomes, suggesting that nitric oxide may contribute to the regulation of synaptic protein function. Vesicular neurotransmitter transporters pack neurotransmitters into synaptic vesicles and play an important role in neurotransmission. In the central nervous system, vesicular monoamine transporter 2 (VMAT2) is responsible for the uptake of monoamines, vesicular acetylcholine transporter (VAChT) is responsible for the uptake of acetylcholine, while vesicular glutamate transporters 1 and 2 (VGLUT1 and VGLUT2) are responsible for the uptake of glutamate. ⋯ Using the biotin switch assay followed by avidin precipitation and immunoblotting we found that the nitric oxide donor nitrosoglutathione (GSNO) not only increased total cysteine S-nitrosylation, but also increased cysteine S-nitrosylation of VMAT2, VAChT, VGLUT1 and VGLUT2 in the mouse brain. Further, GSNO also decreased the vesicular uptake of [(3)H]dopamine, [(3)H]acetylcholine and [(3)H]glutamate. Our studies suggest that the cysteine S-nitrosylation may play an important role in the regulation of vesicular neurotransmitter transport.
-
Mitochondrial fission is predominantly controlled by the activity of dynamin-related protein1 (Drp1), which has been reported to be involved in mitochondria apoptosis pathways. However, the role of Drp1 in a rat model of cardiac arrest remains unknown. ⋯ Moreover, the increase of the vital neuron and the reduction of cytochrome c (CytC) release, apoptosis-inducing factor (AIF) translocation and caspase-3 activation in the brain indicate that this protection might result from the suppression of neuron apoptosis. Altogether, these results indicated that Drp1 is activated after cardiac arrest and the inhibition of Drp1 is protective against cerebral ischemic injury in a rat of cardiac arrest model via inhibition of the mitochondrial apoptosis pathway.
-
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by difficulties with communication and social interactions, restricted, repetitive behaviors and sensory abnormalities. Additionally, the vast majority of subjects with ASD suffer some degree of auditory dysfunction and we have previously identified significant hypoplasia and dysmorphology in auditory brainstem centers in individuals with ASD. Prenatal exposure to the antiepileptic drug valproic acid (VPA) is associated with an increased risk of ASD. ⋯ Further, we found a larger dispersion of c-Fos-positive neurons and shifted tonotopic bands in VPA-exposed rats. We interpret these findings to suggest hyper-responsiveness to sounds and disrupted mapping of sound frequencies after prenatal VPA exposure. Based on these findings, we suggest that such abnormal patterns of activation may play a role in auditory processing deficits in ASD.
-
The role of serotonin7 (5-HT7) receptors in the regulation of depression is poorly understood, particularly in Parkinson's disease-associated depression. Here we examined whether 5-HT7 receptors in the prelimbic (PrL) sub-region of the ventral medial prefrontal cortex (mPFC) involve in the regulation of depressive-like behaviors in sham-operated rats and rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. The lesion induced depressive-like responses as measured by the sucrose preference and forced swim tests when compared to sham-operated rats. ⋯ However, the doses producing these effects in the lesioned rats were higher than those in sham-operated rats. Neurochemical results showed that intra-PrL injection of AS19 (2 μg/rat) increased dopamine, 5-hydroxytryptamine (5-HT) and noradrenaline (NA) levels in the mPFC, habenula and ventral hippocampus (vHip) in sham-operated and the lesioned rats; whereas SB269970 (6 μg/rat) decreased 5-HT levels in the habenula and vHip, and the levels of NA in the mPFC, habenula and vHip in the two groups of rats. The results suggest that 5-HT7 receptors in the PrL play an important role in the regulation of these behaviors, which attribute to changes in monoamine levels in the limbic and limbic-related brain regions after activation and blockade of 5-HT7 receptors.
-
In rat thalamic paraventricular nucleus of thalamus (PVT) neurons, activation of thyrotropin-releasing hormone (TRH) receptors enhances excitability via concurrent decrease in G protein-coupled inwardly-rectifying potassium (GIRK)-like and activation of transient receptor potential cation (TRPC)4/5-like cationic conductances. An exploration of intracellular signaling pathways revealed the TRH-induced current to be insensitive to phosphatidylinositol-specific phospholipase C (PI-PLC) inhibitors, but reduced by D609, an inhibitor of phosphatidylcholine-specific PLC (PC-PLC). A corresponding change in the I-V relationship implied suppression of the cationic component of the TRH-induced current. ⋯ In addition, a TRH-induced enhancement of the low-threshold spike was prevented by both rimonabant, and SR144528. TRH had no influence on excitatory or inhibitory miniature postsynaptic currents, suggesting presynaptic CB receptors are not involved in this situation. Collectively, the data imply that activation of TRH receptors in these midline thalamic neurons engages novel signaling pathways that include postsynaptic intracellular CB1 and CB2 receptors in the activation of TRPC4/5-like channels.