Neuroscience
-
Brain iron levels are significantly increased in Parkinson's disease (PD) and iron deposition is observed in the substantia nigra (SN) of PD patients. It is unclear whether iron overload is an initial cause of dopaminergic neuronal death or merely a byproduct that occurs in the SN of PD patients. In this study, ceruloplasmin knockout (CP-/-) mice and mice receiving an intracerebroventricular injection of ferric ammonium citrate (FAC) were selected as mouse models with high levels of brain iron. ⋯ The intracerebroventricular injection of deferoxamine (DFO) significantly alleviated the neuronal damage caused by MPTP in CP-/- mice. Furthermore, our findings suggest that the increased nigral iron content exacerbates the oxidative stress levels, promoting apoptosis through the Bcl-2/Bax pathway and the activated caspase-3 pathway in the brain. Therefore, iron overload in the brain exacerbates dopaminergic neuronal death in SNpc and leads to the onset of PD.
-
In mice, the compact hippocampal primordium is formed during the prenatal stage by early-generated neurons that migrate from the lateral ventricular zone. However, despite much being understood about the formation of the hippocampus, the molecular mechanisms that maintain the morphology of the hippocampal primordium after its formation remain to be characterized. β-Catenin is a key factor of canonical Wnt signaling and also a component of adherens junctions. Previous embryonic deletion studies have demonstrated that β-catenin is required for early development and generation of granule cells. ⋯ Here, we report that perinatal deletion of β-catenin in postmitotic neurons and some radial glial cells of hippocampus using CamKIIα-iCre; β-cateninflox/flox conditional knockout mice, leads to disorganization of the radial glial scaffold and consequentially severe defects in hippocampal morphology. We demonstrate that β-catenin is required for maintaining radial glial scaffold possibly via its well-known role in cell adhesion during the perinatal period. These findings provide essential advances into our understanding of the maintenance of the hippocampal primordium during the perinatal period.
-
Rats with lesions of the pedunculopontine tegmental nucleus (PPTg) reliably overconsume high concentration sucrose solution. This effect is thought to be indicative of response-perseveration or loss of behavioral control in conditions of high excitement. While these theories have anatomical and behavioral support, they have never been explicitly tested. ⋯ These results establish that it is the salience of the solution which is the determining factor leading to overconsumption following excitotoxic PPTg lesion. They also find no support for response-perseveration contributing to this effect. Results are discussed in terms of altered dopamine (DA) and salience signaling.
-
It has anatomically been revealed that the rostral part of the rat primary somatosensory cortex (S1) directly projects to the dorsal part of the trigeminal oral subnucleus (dorVo) and the dorsal part of juxtatrigeminal region (dorVjuxt), and that the dorVo and dorVjuxt contain premotoneurons projecting directly to the jaw-opening or jaw-closing motoneurons in the trigeminal motor nucleus (Vmo). However, little is known about how the rostral S1 regulates jaw movements in relation to its corticofugal projections. To address this issue, we performed intracortical microstimulation of the rat rostral S1 by monitoring jaw movements and electromyographic (EMG) activities. ⋯ We also found that the effective sites for the two kinds of train stimuli were included in the rostral S1 area, which has previously been identified to send direct projections to the dorVo or the dorVjuxt. Specifically, the most effective stimulation sites for the two kinds of train stimuli were located in the rostralmost part of S1 which has been reported to emanate strong direct projections to the dorVjuxt but less to the dorVo. Therefore, the present study suggests that the rat rostral S1, especially its rostralmost part, plays an important role in controlling jaw movements by activation of direct descending projections from the rostral S1 to the trigeminal premotoneuron pools, especially to the dorVjuxt.
-
Orexins are bioactive peptides, which have been shown to play a pivotal role in vigilance state transitions: the loss of orexin-producing neurons (orexin neurons) leads to narcolepsy with cataplexy in the human. However, the effect of the need for sleep (i.e., sleep pressure) on orexin neurons remains largely unknown. Here, we found that immunostaining intensities of the α1 subunit of the GABAA receptor and neuroligin 2, which is involved in inhibitory synapse specialization, on orexin neurons of mouse brain were significantly increased by 6-h sleep deprivation. ⋯ Using a slice patch recording, orexin neurons demonstrated increased sensitivity to a GABAA receptor agonist together with synaptic plasticity changes after sleep deprivation when compared with an ad lib sleep condition. In summary, the GABAergic input property of orexin neurons responds rapidly to sleep deprivation. This molecular response of orexin neurons may thus play a role in the changes that accompany the need for sleep following prolonged wakefulness, in particular the decreased probability of a transition to wakefulness once recovery sleep has begun.