Neuroscience
-
Dorsal vagal complex (DVC) AMPK regulation of food intake in the estradiol-treated ovariectomized (OVX) female rat is energy state-dependent. Here, RT-PCR array technology was used to identify estradiol-sensitive AMPK-regulated DVC signal transduction pathways that exhibit differential reactivity to sensor activation during energy balance versus imbalance. The AMP mimetic AICAR correspondingly reduced or stimulated cDVC phosphoAMPK (pAMPK) and estrogen receptor-beta (ERβ) proteins in full-fed (F) versus 12-h food-deprived (D) estradiol-treated ovariectomized (OVX) rats, but elevated ER-alpha (ERα) in F only. ⋯ Conversely, genes in these six pathways were up-regulated by AICAR treatment of D. Results show that in this animal model, acute AMP augmentation or feeding cessation each inhibit both pAMPK and ERβ expression, but in combination increase these protein profiles. pAMPK protein and DVC TNF (NFκB), SOCS3 (JAK/STAT), WNT6 (Hedgehog), and FABP1 (PPAR) mRNAs were down- or upregulated in parallel by AICAR in F versus D states, respectively. Further research is needed to determine the impact of ERβ on opposing directionality of these responses, and to characterize the role of the aforementioned signaling pathways in hyperphagic responses in the female to AICAR-induced DVC AMPK activation during acute interruption of feeding.
-
Converging evidence suggests that the Parkinson's disease-linked leucine-rich repeat kinase 2 (LRRK2) modulates cellular function by regulating actin dynamics. In the present study we investigate the role of LRRK2 in functional synaptic terminals of adult LRRK2-knockout and LRRK2(R1441G)-transgenic mice as well as in primary fibroblasts of LRRK2(G2019S) mutation carriers. We show that lack of LRRK2 decreases and overexpression of mutant LRRK2 age-dependently increases the effect of the actin depolymerizing agent Latrunculin A (LatA) on the synaptic cytoskeleton. ⋯ Our data suggest that LRRK2 alters actin dynamics and F-actin structure both in brain neurons and skin fibroblasts. We hypothesize that increased F-actin bundling represents a compensatory mechanism to protect F-actin from the depolymerizing effect of mutant LRRK2 under basal conditions. Our data further indicate that LRRK2-dependent changes in the cytoskeleton might have functional consequences on postsynaptic NMDA receptor localization.
-
Mice of C57BL/6J strain were exposed to 1-month spaceflight on Russian biosatellite Bion-M1 to determine the effect of long-term actual spaceflight on the expression of genes involved in the processes of neurogenesis and apoptosis. Specifically, we focused on the genes encoding proapoptotic factor BAX, antiapoptotic factor BCL-XL, brain-derived neurotrophic factor (BDNF) and BDNF receptors TrkB and p75. Spaceflight reduced the expression of the antiapoptotic BCL-XL gene in the striatum and hypothalamus, but increased it in the hippocampus. ⋯ At the same time, shuttle cabin housing produced insignificant decrease in BAX gene expression in the hippocampus. In contrast to the BCL-XL gene, genes encoding BAX, BDNF as well as TrkB and p75 receptors did not respond to 30-day spaceflight. Thus, long-term spaceflight (1) did not affect the expression of genes encoding BDNF as well as TrkB and p75 receptors, (2) produced dysregulation in genetic control of the neuronal apoptosis, (3) implicated BCL-XL as the risk factor for spaceflight-induced behavioral abnormalities.
-
Brain-derived neurotrophic factor (BDNF) is a widely expressed neurotrophin involved in neurodevelopment, neuroprotection and synaptic plasticity. It is also implicated in a range of psychiatric disorders such as schizophrenia, depression and post-traumatic stress disorder. Stress during adolescence/young adulthood can have long-term psychiatric and cognitive consequences, however it is unknown how altered BDNF signaling is involved in such effects. ⋯ CORT treatment induced impairments in novel-object recognition memory in both genotypes but disrupted fear conditioning extinction learning in BDNF HET rats only. These results show selective behavioral changes in BDNF HET rats, at baseline or after chronic CORT treatment and add to our understanding of the role of BDNF and its interaction with stress. Importantly, this study demonstrates the utility of the BDNF HET rat in investigations into the pathophysiology of various psychiatric disorders.
-
Apart from its repressing effect on plasma lipid levels, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors exert neuroprotective functions in animal models of neurodegenerative disorders. In view of these promising observations, we were interested in whether HMG-CoA reductase inhibition would affect epileptiform activity in the brain. To elucidate this issue, atorvastatin, simvastatin and rosuvastatin were administered orally at a dose of 20 mg/kg each for 3 days and their anti-epileptic activities were tested and compared in rats. ⋯ Here, we provide evidence that among HMG-CoA reductase inhibitors, rosuvastatin was the most effective statin on the reduction of epileptiform activity, which was associated with improved BBB permeability, increased expression of eNOS and decreased expressions of pro-apoptotic p53, Bax and caspase-3. Our observation also revealed that the anti-epileptic effect of rosuvastatin was dependent on the increased expression level of eNOS. The robust anti-epileptic effect encourages proof-of-concept studies with rosuvastatin in human epilepsy patients with hypercholesterolemia.