Neuroscience
-
Dopamine (DA) releasing midbrain neurons are essential for multiple brain functions, such as voluntary movement, working memory, emotion and cognition. DA midbrain neurons within the substantia nigra (SN) and the ventral tegmental area (VTA) exhibit a variety of distinct axonal projections and cellular properties, and are differentially affected in diseases like schizophrenia, attention deficit hyperactivity disorder, and Parkinson's disease (PD). ⋯ Recently, two ion channels have been identified, not only contributing to these activity patterns and to functional properties of DA midbrain neurons, but also seem to render SN DA neurons particularly vulnerable to degeneration in PD and its animal models: L-type calcium channels (LTCCs) and ATP-sensitive potassium channels (K-ATPs). In this review, we focus on the emerging physiological and pathophysiological roles of these two ion channels (and their complex interplay with other ion channels), particularly in highly vulnerable SN DA neurons, as selective degeneration of these neurons causes the major motor symptoms of PD.
-
Neuromodulators rapidly alter activity of neural circuits and can therefore shape higher order functions, such as sensorimotor integration. Increasing evidence suggests that brain-derived estrogens, such as 17-β-estradiol, can act rapidly to modulate sensory processing. However, less is known about how rapid estrogen signaling can impact downstream circuits. ⋯ These effects were not due to direct estradiol actions because NIf has little to no capability for local estrogen synthesis or estrogen receptors, and these effects were specific to NIf because other neurons immediately surrounding NIf did not show these changes. Our results demonstrate that transsynaptic, rapid fluctuations in neuroestrogens are transmitted into NIf and subsequently HVC, both regions important for sensorimotor integration. Overall, these findings support the hypothesis that acute neurosteroid actions can propagate within and between neural circuits to modulate their functional connectivity.
-
Severe brain injuries can trigger epileptogenesis, a latent period that eventually leads to epilepsy. Previous studies have demonstrated that changes in local connectivity between cortical neurons are a part of the epileptogenic processes. In the present study we aimed to investigate whether changes in long-range connectivity are also involved in epileptogenesis. ⋯ The increase in the number of retrogradely stained neurons was accompanied with a significant decrease in neocortical spine density in the undercut area, a reduction in vertical and an increase in horizontal orientation of neuronal processes. The present study shows global morphological changes underlying epileptogenesis. An increased connectivity in the injured cortical regions accompanied with a decrease in spine density suggests that excitatory synapses might be formed on dendritic shafts, which probably contributes to the altered neuronal excitability that was described in previous studies on epileptogenesis.
-
Previous studies that utilized task-based approaches have demonstrated that the chronic use of heroin is associated with altered activity of the anterior cingulate cortex (ACC). However, few studies have focused on examining the variation in resting-state functional connectivity in heroin-dependent individuals, which might help further understanding the mechanisms underlying heroin addiction. Due to the structural and functional heterogeneity of the ACC, we systematically mapped the resting-state functional connectivity patterns of three sub-regions of the ACC in heroin-dependent individuals, wondered whether the partition of three sub-regions of the ACC is feasible in heroin-dependent individuals, and identified how heroin affected the correlated activities among three sub-regions of the ACC using resting-state functional magnetic resonance imaging (fMRI). ⋯ Meanwhile, there exhibited an inverted alteration of pattern for orbital frontal cortex (OFC) and superior frontal gyrus (SFG) in the functional connectivity network with the dACC and subcallosal ACC (sACC), and a different alteration of the cerebellum and the amygdala in the functional connectivity network with the rACC and the sACC. In addition, we also found reduced connectivities between dACC and rACC, as well as reduced connectivities between sACC and dACC. Our findings of variations of functional connectivities in three sub-regions of ACC in Her group implied that these sub-regions of the ACC together with other key brain areas (such as dorsal striatum, OFC, SFG, cerebellum, amygdale, etc.) might potentially play independent and/or overlapping roles in heroin addiction, which might indicate the potential direction of future research.