Neuroscience
-
The effect of lacosamide (LCS), a functionalized molecule with anti-convulsant properties, on ion channels was investigated, with the aid of patch clamp technology and simulation modeling. In NSC-34 neuronal cells, LCS was found to block voltage-gated Na(+) current (INa) in a frequency- and concentration-dependent manner. With the two-step voltage protocol, a minimal change in the steady-state inactivation of INa was found in the presence of LCS. ⋯ Moreover, LCS suppressed the peak amplitude of INa in embryonic cortical neurons. In human embryonic kidney (HEK293T) cells which expressed SCN5A, LCS attenuated the peak amplitude of INa, in a concentration-dependent fashion. The unique effects of LCS on NaV currents presented here may contribute to its in vivo modulation of cellular excitability.
-
Recent clinical studies suggest GABA-ergic system abnormalities as a neuropathological mechanism of schizophrenia. ⋯ This study provided evidence of a key role for the GABA system in neurodevelopment associated with the etiopathogenesis of schizophrenia and showed that the observed changes are sex-dependent. Moreover, this study is the first to present a model of schizophrenia based on prenatal LPS administration, which not only produced behavioral abnormalities but also changed the cytoarchitecture of the GABA inhibitory system.
-
Tormentic acid (TA) has been reported to have anticancer, anti-inflammatory and anti-atherogenic properties. However, the effects of TA on neuroinflammation have not been reported. In this study, we investigated whether TA inhibited lipopolysaccharide (LPS)-induced inflammatory response in BV2 microglia cells. ⋯ Furthermore, TA could activate LXRα and inhibit LPS-induced NF-κB activation. Knowdown of LXRα reversed the anti-inflammatory effects of TA. In conclusion, our results indicate that TA exerts an anti-inflammatory effect on LPS-stimulated BV2 microglia cells by activating LXRα.
-
Connexin43 (Cx43) as a building block of gap junction channels and hemichannels exerts important functions in astrocytes. When these cells acquire a malignant phenotype Cx43 protein but not mRNA levels are downregulated, being negligible in high-grade astrocytoma or glioblastoma multiforme, the most common and deadliest of malignant primary brain tumors in adults. Some microRNAs associated to glioma target Cx43 and could explain the lack of correlation between mRNA and protein levels of Cx43 found in some high-grade astrocytomas. ⋯ We summarize data that indicate that Cx43-Src interaction inhibits the oncogenic activity of Src and promotes a conformational change in the structure of Cx43 that allosterically modifies the binding to other important signaling proteins. As a consequence, crucial cell functions, such as proliferation or migration, could be strongly affected. We propose that the knowledge of the structural basis of the antitumorigenic effect of Cx43 on astrocytomas could help to design new therapies against this incurable disease.
-
Spinal cord injury (SCI) represents a severe health problem worldwide usually associated with severe disability and reduced quality of life. The aim of this work was to investigate the role of prohibitin 1 (PHB1) in the progression of SCI in rats. Firstly, we observed that expression of PHB1 was downregulated following SCI in rats. ⋯ Ad-PHB1 administration following SCI restored mitochondrial adenosine triphosphate formation, reduced reactive oxygen species formation, and improved mitochondrial respiration rates. Finally, Ad-PHB1 administration following SCI activated downstream signals including phosphatidylinositol-3-kinase (PI3K)/Akt, extracellular signal-regulated kinase (ERK1/2), and nuclear factor-kappaB. These data indicate that the PHB1 plays an important role in the development of SCI and might provide a therapeutic target to promote recovery from SCI.