Neuroscience
-
The same clock-genes, including Period (PER) 1 and 2, that show rhythmic expression in the suprachiasmatic nucleus (SCN) are also rhythmically expressed in other brain regions that serve as extra-SCN oscillators. Outside the hypothalamus, the phase of these extra-SCN oscillators appears to be reversed when diurnal and nocturnal mammals are compared. Based on mRNA data, PER1 protein is expected to peak in the late night in the paraventricular nucleus of the hypothalamus (PVN) of nocturnal laboratory rats, but comparable data are not available for a diurnal species. ⋯ All three groups showed elevated levels of melatonin at night, with higher levels during both the day and night being associated with the levels of activity displayed by each group. The differential phase of rhythms in the clock-gene protein in the PVN of diurnal and nocturnal animals presents a possible mechanism for explaining species differences in the phase of autonomic rhythms controlled, in part, by the PVN. The present study suggests that the phase of the oscillator of the PVN does not determine that of the melatonin rhythm in diurnal and nocturnal species or in diurnal and nocturnal chronotypes within a species.
-
Neural activity promotes circuit formation in developing systems and during critical periods permanently modifies circuit organization and functional properties. These observations suggest that excessive neural activity, as occurs during seizures, might influence developing neural circuitry with long-term outcomes that depend on age at the time of seizures. We systematically examined long-term structural and functional consequences of seizures induced in rats by kainic acid, pentylenetetrazol, and hyperthermia across postnatal ages from birth through postnatal day 90 in adulthood (P90). ⋯ Seizures after P30 induced a different pattern of DTI abnormalities in the fimbria and hippocampus accompanied by gross cerebral atrophy with increases in lateral ventricular volume, as well as increased PPI in the DG at ⩾P95. In contrast, seizures between P20 and P30 did not result in cerebral atrophy or significant imaging abnormalities in the hippocampus or white matter, but irreversibly decreased PPI in the DG compared to normal adult controls. These age-specific long-term structural and functional outcomes identify P20-30 as a potential critical period in hippocampal development defined by distinctive long-term structural and functional properties in adult hippocampal circuitry, including loss of capacity for seizure-induced plasticity in adulthood that could influence epileptogenesis and other hippocampal-dependent behaviors and functional properties.
-
Structural changes that alter hippocampal functional circuitry are implicated in learning impairments, mood disorders and epilepsy. Reorganization of mossy fiber (MF) axons from dentate granule cells is one such form of plasticity. Increased neurotrophin signaling is proposed to underlie MF plasticity, and there is evidence to support a mechanistic role for brain-derived neurotrophic factor (BDNF) in this process. ⋯ No evidence of MF sprouting was seen in the inner molecular layer. Additional stereological analyses demonstrated significant increases in molecular layer (ML) volume in TgBDNF mice at both ages, as well as an increase in granule cell number by 8months of age. Collectively, these results indicate that sustained increases in endogenous BDNF modify dentate structural organization over time, and may thereby contribute to the development of pro-epileptic circuitry.
-
Gonadectomy in adult male rats significantly impairs spatial working memory, behavioral flexibility and other functions associated with the prefrontal cortex (PFC). However, the mechanisms through which this occurs are largely unknown. In this study, intracortical drug challenge with the selective N-methyl-d-aspartate receptor (NMDAR) antagonist D(-)-2-amino-5-phosphonopentanoic acid (APV) was combined with Barnes maze testing, gonadectomy (GDX) and hormone replacement (17β-estradiol, testosterone propionate) to explore the contributions of NMDAR-mediated activity within the PFC to hormone effects on spatial cognition in adult male rats. ⋯ Together these findings suggest that hormone regulation of NMDAR-mediated activity specifically within the PFC may be fundamental to the effects of gonadal steroids on spatial cognition in males. Our findings further identify NMDAR antagonists as potentially novel, non-steroidal means of attenuating the cognitive deficits that can accompany gonadal hormone decline in human males in aging, clinical cases of hypogonadalism and in certain neurologic and psychiatric illnesses. Accordingly, it may be important to obtain in males the kind of detailed knowledge concerning hormone effects on, for example, the channel and electrophysiological properties of NMDAR that currently exists for the female brain.
-
The myelin-associated protein Nogo-A is among the most potent neurite growth inhibitors in the adult CNS. Recently, Nogo-A expression was demonstrated in a number of neuronal subpopulations of the adult and developing CNS but at present, little is known about the expression of Nogo-A in the nigrostriatal system, a brain structure severely affected in Parkinson's disease (PD). The present study sought to characterize the expression pattern of Nogo-A immunoreactive (ir) cells in the adult ventral mesencephalon of control rats and in the 6-hydroxydopamine (6-OHDA) rat model of PD. ⋯ In the striatum, both small and large Nogo-A-positive cells were detected. The large cells were identified as cholinergic interneurons. Our results suggest yet unidentified functions of Nogo-A in the CNS beyond the inhibition of axonal regeneration and plasticity, and may indicate a role for Nogo-A in PD.